一、两层神经网络(感知机)
import numpy as np '''极简两层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,0,1,1]) # 权值矩阵 初始化 Wi = 2 * np.random.random(3) - 1 for iter in range(10000): # 前向传播,计算误差 li = X lo = 1 / (1 + np.exp(-np.dot(li, Wi))) # 激活函数:sigmoid lo_error = y - lo # 后向传播,更新权值 lo_delta = lo_error * lo * (1 - lo) # sigmoid函数的导数(梯度下降) Wi += np.dot(lo_delta, li) print("训练效果: ", lo)
说明:
只有两层:输入层/输出层, 本质是感知机
离线算法:批量学习(numpy矩阵运算的威力在此体现出来了)
效果还蛮不错:
二、三层神经网络
import numpy as np '''极简三层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,1,1,0]) # 权值矩阵 Wi = 2 * np.random.random((3, 5)) - 1 Wh = 2 * np.random.random(5) - 1 # 训练 for i in range(10000): # 前向传播,计算误差 li = X lh = 1 / (1 + np.exp(-np.dot(li, Wi))) lo = 1 / (1 + np.exp(-np.dot(lh, Wh))) lo_error = y - lo # 后向传播,更新权值 lo_delta = lo_error * (lo * (1 - lo)) lh_delta = np.outer(lo_delta, Wh) * (lh * (1 - lh)) # 外积!感谢 numpy 的强大! Wh += np.dot(lh.T, lo_delta) Wi += np.dot(li.T, lh_delta) print("训练之后: ", lo)
说明: 增加了一个隐藏层(五个节点)
三、四层神经网络
import numpy as np '''极简四层反传(BP)神经网络''' # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,1,1,0]) # 权值矩阵 Wi = 2 * np.random.random((3, 5)) - 1 Wh1 = 2 * np.random.random((5, 4)) - 1 Wh2 = 2 * np.random.random(4) - 1 # 训练 for i in range(10000): # 前向传播,计算误差 li = X lh1 = 1 / (1 + np.exp(-np.dot(li, Wi ))) lh2 = 1 / (1 + np.exp(-np.dot(lh1, Wh1))) lo = 1 / (1 + np.exp(-np.dot(lh2, Wh2))) lo_error = y - lo # 后向传播,更新权值 lo_delta = lo_error * (lo * (1 - lo)) lh2_delta = np.outer(lo_delta, Wh2.T) * (lh2 * (1 - lh2)) lh1_delta = np.dot(lh2_delta, Wh1.T) * (lh1 * (1 - lh1)) # 注意:这里是dot! Wh2 += np.dot(lh2.T, lo_delta) Wh1 += np.dot(lh1.T, lh2_delta) Wi += np.dot(li.T, lh1_delta) print("训练之后: ", lo)
说明: 增加了两个隐藏层(五个节点,四个节点)
四、三层神经网络的另一种方式
import numpy as np # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,1,1,0]) ni = 3 # 输入层节点数 nh = 5 # 隐藏层节点数 no = 2 # 输出层节点数(注意这里是2!!) # 初始化矩阵、偏置 Wi = np.random.randn(ni, nh) / np.sqrt(ni) Wh = np.random.randn(nh, no) / np.sqrt(nh) bh = np.zeros(nh) bo = np.zeros(no) # 训练 for i in range(1000): # 前向传播 li = X lh = np.tanh(np.dot(X, Wi) + bh) # tanh 函数 lo = np.exp(np.dot(lh, Wh) + bo) probs = lo / np.sum(lo, axis=1, keepdims=True) # 后向传播 lo_delta = probs lo_delta[range(X.shape[0]), y] += 1 # -=1 lh_delta = np.dot(lo_delta, Wh.T) * (1 - np.power(lh, 2)) # tanh 函数的导数 # 更新权值、偏置 epsilon = 0.01 # 学习速率 lamda = 0.01 # 正则化强度 bo += -epsilon * np.sum(lo_delta, axis=0, keepdims=True).reshape(-1) Wh += -epsilon * (np.dot(lh.T, lo_delta) + lamda * Wh) bh += -epsilon * np.sum(lh_delta, axis=0) Wi += -epsilon * (np.dot(X.T, lh_delta) + lamda * Wi) print("训练之后: ", np.argmax(probs, axis=1))
说明:
1. 输出层有两个节点。其原因是样本有两种类别(最值得注意)
2. 添加了偏置、学习速率、正则化强度
3. 预测结果是: np.argmax(probs, axis=1)
4. 当然,也可以推广到多个隐藏层的情况
五、任意层数的神经网络
import numpy as np # 样本 X = np.array([[0,0,1],[0,1,1],[1,0,1],[1,1,1]]) y = np.array([0,1,1,0]) # 神经网络结构,层数任意! sizes = [3,5,7,2] # 初始化矩阵、偏置 biases = [np.random.randn(j) for j in sizes[1:]] weights = [np.random.randn(i,j) for i,j in zip(sizes[:-1], sizes[1:])] layers = [None] * len(sizes) layers[0] = X layers_delta = [None] * (len(sizes) - 1) epsilon = 0.01 # 学习速率 lamda = 0.01 # 正则化强度 # 训练 for i in range(1000): # 前向传播 for i in range(1, len(layers)): layers[i] = 1 / (1 + np.exp(-(np.dot(layers[i-1], weights[i-1]) + biases[i-1]))) # 后向传播 probs = layers[-1] / np.sum(layers[-1], axis=1, keepdims=True) layers_delta[-1] = probs layers_delta[-1][range(X.shape[0]), y] += 1 for i in range(len(sizes)-2, 0, -1): layers_delta[i-1] = np.dot(layers_delta[i], weights[i].T) * (layers[i] * (1 - layers[i])) # 更新权值、偏置 for i in range(len(sizes)-2, -1, -1): biases[i] -= epsilon * np.sum(layers_delta[i], axis=0) weights[i] -= epsilon * (np.dot(layers[i].T, layers_delta[i]) + lamda * weights[i]) print("训练之后-->np.argmax(probs, axis=1): ", np.argmax(probs, axis=1))
说明:
1. 这只是上一种神经网络的层数的扩展
2. 通过内部循环,层数可以任意。
3. 循环次数太大的时候(比如10000),会报RunTimeError,貌似溢出