zoukankan      html  css  js  c++  java
  • kafka producer自定义partitioner和consumer多线程

      为了更好的实现负载均衡和消息的顺序性,Kafka Producer可以通过分发策略发送给指定的Partition。Kafka Java客户端有默认的Partitioner,平均的向目标topic的各个Partition中生产数据,如果想要控制消息的分发策略,有两种方式,一种是在发送前创建ProducerRecord时指定分区(针对单个消息),另一种就是就是根据Key自己写算法。继承Partitioner接口,实现其partition方法。并且配置启动参数 props.put("partitioner.class","com.example.demo.MyPartitioner"),示例代码如下:

      自定义的partitoner

    package com.example.demo;
    
    import java.util.Map;
    
    import org.apache.kafka.clients.producer.Partitioner;
    import org.apache.kafka.common.Cluster;
    
    public class MyPartitioner implements Partitioner {
    
        @Override
        public void configure(Map<String, ?> configs) {
    
        }
    
        @Override
        public int partition(String topic, Object key, byte[] keyBytes, Object value, byte[] valueBytes, Cluster cluster) {
             if (Integer.parseInt((String)key)%3==1)
                    return 0;
             else if (Integer.parseInt((String)key)%3==2)
                    return 1;
             else return 2;
        }
    
        @Override
        public void close() {
    
        }
    
    }

      producer类中指定partitioner.class

    package com.example.demo;
    
    import java.util.Properties;
    
    import org.apache.kafka.clients.producer.KafkaProducer;
    import org.apache.kafka.clients.producer.Producer;
    import org.apache.kafka.clients.producer.ProducerRecord;
    
    public class MyProducer {
    
        public static void main(String[] args) {
            Properties props = new Properties();
            props.put("bootstrap.servers", "192.168.1.124:9092");
                    props.put("acks", "all");
                    props.put("retries", 0);
                    props.put("batch.size", 16384);
                    props.put("linger.ms", 1);
                    props.put("partitioner.class", "com.example.demo.MyPartitioner");
                    props.put("buffer.memory", 33554432);
            props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");
            props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
    
            Producer<String, String> producer = new KafkaProducer<>(props);
            for (int i = 0; i < 100; i++)
                producer.send(new ProducerRecord<String, String>("powerTopic", Integer.toString(i), Integer.toString(i)));
    
            producer.close();
    
        }
    }

      测试consumer

      

    package com.example.demo;
    
    import java.util.Arrays;
    import java.util.Properties;
    
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    
    public class MyAutoCommitConsumer {
    
        public static void main(String[] args) {
             Properties props = new Properties();
             props.put("bootstrap.servers", "192.168.1.124:9092");
             props.put("group.id", "test");
             props.put("enable.auto.commit", "true");
             props.put("auto.commit.interval.ms", "1000");
             props.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
             props.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
             @SuppressWarnings("resource")
            KafkaConsumer<String, String> consumer = new KafkaConsumer<>(props);
             consumer.subscribe(Arrays.asList("powerTopic"));
             while (true) {
                 ConsumerRecords<String, String> records = consumer.poll(100);
                 for (ConsumerRecord<String, String> record : records)
                     System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n",record.partition(), record.offset(), record.key(), record.value());
             }
        }
    }

      启动zookeeper和kafka,使用命令行新建一个 3个partition的topic:powerTopic,为了方便查看结果,将producer的循环次数设置为15,运行consumer和producer代码,效果如下:

      虽然我们有三个分区,但是我们group组中只有一个消费者,所以三个分区的消息被这个消费者顺序消费,下面我们实现一个消费者组,示例代码如下:

      ConsumerThread类

    package com.example.demo;
    
    import org.apache.kafka.clients.consumer.ConsumerRecord;
    import org.apache.kafka.clients.consumer.ConsumerRecords;
    import org.apache.kafka.clients.consumer.KafkaConsumer;
    
    import java.util.Arrays;
    import java.util.Properties;
    
    public class ConsumerThread implements Runnable {
        private  KafkaConsumer<String,String> kafkaConsumer;
        private final String topic;
    
        public ConsumerThread(String brokers,String groupId,String topic){
            Properties properties = buildKafkaProperty(brokers,groupId);
            this.topic = topic;
            this.kafkaConsumer = new KafkaConsumer<String, String>(properties);
            this.kafkaConsumer.subscribe(Arrays.asList(this.topic));
        }
    
        private static Properties buildKafkaProperty(String brokers,String groupId){
            Properties properties = new Properties();
            properties.put("bootstrap.servers", brokers);
            properties.put("group.id", groupId);
            properties.put("enable.auto.commit", "true");
            properties.put("auto.commit.interval.ms", "1000");
            properties.put("session.timeout.ms", "30000");
            properties.put("auto.offset.reset", "earliest");
            properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");
            return properties;
        }
    
        @Override
        public void run() {
            while (true){
                ConsumerRecords<String,String> consumerRecords = kafkaConsumer.poll(100);
                for(ConsumerRecord<String,String> item : consumerRecords){
                    System.out.println(Thread.currentThread().getName());
                    System.out.printf("partition = %d,offset = %d, key = %s, value = %s%n",item.partition(), item.offset(), item.key(), item.value());
                }
            }
        }
    }

      ConsumerGroup类

    package com.example.demo;
    
    import java.util.ArrayList;
    import java.util.List;
    
    public class ConsumerGroup {
        private List<ConsumerThread> consumerThreadList = new ArrayList<ConsumerThread>();
    
        public ConsumerGroup(String brokers,String groupId,String topic,int consumerNumber){
            for(int i = 0; i< consumerNumber;i++){
                ConsumerThread consumerThread = new ConsumerThread(brokers,groupId,topic);
                consumerThreadList.add(consumerThread);
            }
        }
    
        public void start(){
            for (ConsumerThread item : consumerThreadList){
                Thread thread = new Thread(item);
                thread.start();
            }
        }
    }

      消费者组启动类ConsumerGroupMain

    package com.example.demo;
    
    public class ConsumerGroupMain {
    
        public static void main(String[] args){
            String brokers = "192.168.1.124:9092";
            String groupId = "group01";
            String topic = "powerTopic";
            int consumerNumber = 3;
            ConsumerGroup consumerGroup = new ConsumerGroup(brokers,groupId,topic,consumerNumber);
            consumerGroup.start();
        }
    }

      启动消费者和生产者,可以看到不同的分区是不同的线程去执行的效果如下:

  • 相关阅读:
    心情不好的时候
    离骚
    沁园春.雪
    顾炎武《精卫》
    韩愈《祝融峰》
    Python量化交易的简单介绍
    H5页面跳转到小程序代码
    小程序上拉加载,下拉刷新
    第一阶段:Python开发基础 day36 并发编程之Process的join用法和其他用法
    课后练习 第一阶段:Python开发基础 day38 多线程相关小练习
  • 原文地址:https://www.cnblogs.com/hhhshct/p/9647025.html
Copyright © 2011-2022 走看看