322. 零钱兑换
给定不同面额的硬币 coins 和一个总金额 amount。编写一个函数来计算可以凑成总金额所需的最少的硬币个数。如果没有任何一种硬币组合能组成总金额,返回 -1。
你可以认为每种硬币的数量是无限的。
示例 1:
输入:coins = [1, 2, 5], amount = 11 输出:3 解释:11 = 5 + 5 + 1
示例 2:
输入:coins = [2], amount = 3
输出:-1
示例 3:
输入:coins = [1], amount = 0
输出:0
示例 4:
输入:coins = [1], amount = 1
输出:1
示例 5:
输入:coins = [1], amount = 2
输出:2
提示:
1 <= coins.length <= 12 1 <= coins[i] <= 231 - 1 0 <= amount <= 104
思路一:回溯
回溯,每次可以继续选当前面值的硬币,也可以选下个面值的硬币
1 class Solution { 2 public int count = 1 << 30; 3 public boolean flag = false; 4 5 public int coinChange(int[] coins, int amount) { 6 // 先对coins进行大小排序 7 Arrays.sort(coins); 8 traceBack(coins, coins.length-1, 0, amount, 0); 9 return flag ? count : -1; 10 } 11 12 // 回溯,每次可以继续选当前面值的硬币,也可以选下个面值的硬币 13 public void traceBack(int[] coins, int nowIndex, int nowSum, int amount, int cnt){ 14 15 if(nowIndex < 0){ 16 return; 17 } 18 if(nowSum >= amount){ 19 if(nowSum == amount){ 20 count = Math.min(count, cnt); 21 flag = true; 22 } 23 return; 24 } 25 if(nowSum + coins[nowIndex] <= amount){ 26 traceBack(coins, nowIndex, nowSum + coins[nowIndex], amount, cnt + 1); 27 } 28 traceBack(coins, nowIndex - 1, nowSum , amount, cnt); 29 } 30 }
时间超时
复杂度分析:
思路二:完全背包的动态规划
参考:https://leetcode-cn.com/problems/coin-change/solution/322-ling-qian-dui-huan-by-leetcode-solution/
dp[i][j]表示使用前i中面值的硬币能构成总金额为j的最少硬币个数
当选当前面值的硬币是dp[i][j] = dp[i-1][j-coins[i]];
当不选是d[i][j] = d[i][j];
所以状态转移方程为 dp[i][j] = Math.min(dp[i-1][j], dp[i][j-coins[i]] + 1);
初值,dp[i][0] = 0,凑成总金额为0需要的最少硬币个数始终为0
不降维的代码,一直有问题,但是不知道哪里错了
1 class Solution { 2 public int coinChange(int[] coins, int amount) { 3 int len = coins.length; 4 int[][] dp = new int[len + 1][amount + 1]; 5 int inf = 1 << 30; 6 for(int i = 0; i <= len; i++){ 7 Arrays.fill(dp[i], inf); 8 dp[i][0] = 0; 9 } 10 11 for(int i = 1; i <= len; i++){ 12 for(int j = coins[i-1]; j <= amount; j++){ 13 dp[i][j] = Math.min(dp[i-1][j], dp[i][j - coins[i - 1]] + 1); 14 } 15 } 16 return dp[len][amount] == inf ? -1 : dp[len][amount]; 17 } 18 }
空间降维后的代码可以通过
1 class Solution { 2 public int coinChange(int[] coins, int amount) { 3 4 int len = coins.length; 5 int[] dp = new int[amount + 1]; 6 int inf = 1 << 30; 7 Arrays.fill(dp, inf); 8 dp[0] = 0; 9 for(int i = 1; i <= len; i++){ 10 for(int j = coins[i-1]; j <= amount; j++){ 11 dp[j] = Math.min(dp[j], dp[j - coins[i - 1]] + 1); 12 } 13 } 14 return dp[amount] == inf ? -1 : dp[amount]; 15 } 16 }
leetcode 执行用时:13 ms > 91.36%, 内存消耗:38.1 MB > 84.41%
复杂度分析:
时间复杂度:O(nc)。两个循环,所以时间复杂度为O(nc)。c是 amount。
空间复杂度:O(c)。只需要一个 大小为 acmount的数组。