zoukankan      html  css  js  c++  java
  • 多层感知机

    多层感知机

    1. 多层感知机的基本知识
    2. 使用多层感知机图像分类的从零开始的实现
    3. 使用pytorch的简洁实现

    多层感知机的基本知识

    深度学习主要关注多层模型。在这里,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的概念。

    隐藏层

    下图展示了一个多层感知机的神经网络图,它含有一个隐藏层,该层中有5个隐藏单元。

    Image Name

    表达公式

    具体来说,给定一个小批量样本(oldsymbol{X} in mathbb{R}^{n imes d}),其批量大小为(n),输入个数为(d)。假设多层感知机只有一个隐藏层,其中隐藏单元个数为(h)。记隐藏层的输出(也称为隐藏层变量或隐藏变量)为(oldsymbol{H}),有(oldsymbol{H} in mathbb{R}^{n imes h})。因为隐藏层和输出层均是全连接层,可以设隐藏层的权重参数和偏差参数分别为(oldsymbol{W}_h in mathbb{R}^{d imes h})(oldsymbol{b}_h in mathbb{R}^{1 imes h}),输出层的权重和偏差参数分别为(oldsymbol{W}_o in mathbb{R}^{h imes q})(oldsymbol{b}_o in mathbb{R}^{1 imes q})

    我们先来看一种含单隐藏层的多层感知机的设计。其输出(oldsymbol{O} in mathbb{R}^{n imes q})的计算为

    [ egin{aligned} oldsymbol{H} &= oldsymbol{X} oldsymbol{W}_h + oldsymbol{b}_h,\ oldsymbol{O} &= oldsymbol{H} oldsymbol{W}_o + oldsymbol{b}_o, end{aligned} ]

    也就是将隐藏层的输出直接作为输出层的输入。如果将以上两个式子联立起来,可以得到

    [ oldsymbol{O} = (oldsymbol{X} oldsymbol{W}_h + oldsymbol{b}_h)oldsymbol{W}_o + oldsymbol{b}_o = oldsymbol{X} oldsymbol{W}_holdsymbol{W}_o + oldsymbol{b}_h oldsymbol{W}_o + oldsymbol{b}_o. ]

    从联立后的式子可以看出,虽然神经网络引入了隐藏层,却依然等价于一个单层神经网络:其中输出层权重参数为(oldsymbol{W}_holdsymbol{W}_o),偏差参数为(oldsymbol{b}_h oldsymbol{W}_o + oldsymbol{b}_o)。不难发现,即便再添加更多的隐藏层,以上设计依然只能与仅含输出层的单层神经网络等价。

    激活函数

    上述问题的根源在于全连接层只是对数据做仿射变换(affine transformation),而多个仿射变换的叠加仍然是一个仿射变换。解决问题的一个方法是引入非线性变换,例如对隐藏变量使用按元素运算的非线性函数进行变换,然后再作为下一个全连接层的输入。这个非线性函数被称为激活函数(activation function)。

    下面我们介绍几个常用的激活函数:

    ReLU函数

    ReLU(rectified linear unit)函数提供了一个很简单的非线性变换。给定元素(x),该函数定义为

    [ ext{ReLU}(x) = max(x, 0). ]

    可以看出,ReLU函数只保留正数元素,并将负数元素清零。为了直观地观察这一非线性变换,我们先定义一个绘图函数xyplot。

    %matplotlib inline
    import torch
    import numpy as np
    import matplotlib.pyplot as plt
    import sys
    sys.path.append("/home/kesci/input")
    import d2lzh1981 as d2l
    print(torch.__version__)
    
    1.3.0
    
    def xyplot(x_vals, y_vals, name):
        # d2l.set_figsize(figsize=(5, 2.5))
        plt.plot(x_vals.detach().numpy(), y_vals.detach().numpy())
        plt.xlabel('x')
        plt.ylabel(name + '(x)')
    
    x = torch.arange(-8.0, 8.0, 0.1, requires_grad=True)
    y = x.relu()
    xyplot(x, y, 'relu')
    
    y.sum().backward()
    xyplot(x, x.grad, 'grad of relu')
    

    Sigmoid函数

    sigmoid函数可以将元素的值变换到0和1之间:

    [ ext{sigmoid}(x) = frac{1}{1 + exp(-x)}. ]

    x.grad.zero_()
    y = x.sigmoid()
    xyplot(x, y, 'sigmoid')
    

    依据链式法则,sigmoid函数的导数

    [ ext{sigmoid}'(x) = ext{sigmoid}(x)left(1- ext{sigmoid}(x) ight). ]

    下面绘制了sigmoid函数的导数。当输入为0时,sigmoid函数的导数达到最大值0.25;当输入越偏离0时,sigmoid函数的导数越接近0。

    y.sum().backward()
    xyplot(x, x.grad, 'grad of sigmoid')
    

    tanh函数

    tanh(双曲正切)函数可以将元素的值变换到-1和1之间:

    [ ext{tanh}(x) = frac{1 - exp(-2x)}{1 + exp(-2x)}. ]

    我们接着绘制tanh函数。当输入接近0时,tanh函数接近线性变换。虽然该函数的形状和sigmoid函数的形状很像,但tanh函数在坐标系的原点上对称。

    y = x.tanh()
    xyplot(x, y, 'tanh')
    

    依据链式法则,tanh函数的导数

    [ ext{tanh}'(x) = 1 - ext{tanh}^2(x). ]

    下面绘制了tanh函数的导数。当输入为0时,tanh函数的导数达到最大值1;当输入越偏离0时,tanh函数的导数越接近0。

    x.grad.zero_()
    y.sum().backward()
    xyplot(x, x.grad, 'grad of tanh')
    

    关于激活函数的选择

    ReLu函数是一个通用的激活函数,目前在大多数情况下使用。但是,ReLU函数只能在隐藏层中使用。

    用于分类器时,sigmoid函数及其组合通常效果更好。由于梯度消失问题,有时要避免使用sigmoid和tanh函数。

    在神经网络层数较多的时候,最好使用ReLu函数,ReLu函数比较简单计算量少,而sigmoid和tanh函数计算量大很多。

    在选择激活函数的时候可以先选用ReLu函数如果效果不理想可以尝试其他激活函数。

    多层感知机

    多层感知机就是含有至少一个隐藏层的由全连接层组成的神经网络,且每个隐藏层的输出通过激活函数进行变换。多层感知机的层数和各隐藏层中隐藏单元个数都是超参数。以单隐藏层为例并沿用本节之前定义的符号,多层感知机按以下方式计算输出:

    [ egin{aligned} oldsymbol{H} &= phi(oldsymbol{X} oldsymbol{W}_h + oldsymbol{b}_h),\ oldsymbol{O} &= oldsymbol{H} oldsymbol{W}_o + oldsymbol{b}_o, end{aligned} ]

    其中(phi)表示激活函数。

    多层感知机从零开始的实现

    import torch
    import numpy as np
    import sys
    sys.path.append("/home/kesci/input")
    import d2lzh1981 as d2l
    print(torch.__version__)
    
    1.3.0
    

    获取训练集

    batch_size = 256
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')
    

    定义模型参数

    num_inputs, num_outputs, num_hiddens = 784, 10, 256 # w层, h层,输出层 
    
    W1 = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_hiddens)), dtype=torch.float)
    b1 = torch.zeros(num_hiddens, dtype=torch.float) # h = w * x + b
    W2 = torch.tensor(np.random.normal(0, 0.01, (num_hiddens, num_outputs)), dtype=torch.float)
    b2 = torch.zeros(num_outputs, dtype=torch.float) # output = h*w + b
    
    params = [W1, b1, W2, b2]
    for param in params:
        param.requires_grad_(requires_grad=True)
    

    定义激活函数

    def relu(X):
        return torch.max(input=X, other=torch.tensor(0.0))
    

    定义网络

    def net(X):
        X = X.view((-1, num_inputs))
        H = relu(torch.matmul(X, W1) + b1)
        return torch.matmul(H, W2) + b2
    

    定义损失函数

    loss = torch.nn.CrossEntropyLoss()
    

    训练

    num_epochs, lr = 5, 100.0
    def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,
                  params=None, lr=None, optimizer=None):
        for epoch in range(num_epochs):
            train_l_sum, train_acc_sum, n = 0.0, 0.0, 0
            for X, y in train_iter:
                y_hat = net(X)
                l = loss(y_hat, y).sum()
                
                # 梯度清零
                if optimizer is not None:
                    optimizer.zero_grad()
                elif params is not None and params[0].grad is not None:
                    for param in params:
                        param.grad.data.zero_()
                
                l.backward()
                if optimizer is None:
                    d2l.sgd(params, lr, batch_size)
                else:
                    optimizer.step()  # “softmax回归的简洁实现”一节将用到
                
                
                train_l_sum += l.item()
                train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()
                n += y.shape[0]
            test_acc = evaluate_accuracy(test_iter, net)
            print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'
                  % (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))
    
    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, params, lr)
    
    epoch 1, loss 0.0031, train acc 0.708, test acc 0.762
    epoch 2, loss 0.0019, train acc 0.822, test acc 0.803
    epoch 3, loss 0.0017, train acc 0.844, test acc 0.830
    epoch 4, loss 0.0015, train acc 0.857, test acc 0.822
    epoch 5, loss 0.0015, train acc 0.864, test acc 0.837
    

    多层感知机pytorch实现

    import torch
    from torch import nn
    from torch.nn import init
    import numpy as np
    import sys
    sys.path.append("/home/kesci/input")
    import d2lzh1981 as d2l
    
    print(torch.__version__)
    
    1.3.0
    

    初始化模型和各个参数

    num_inputs, num_outputs, num_hiddens = 784, 10, 256
        
    net = nn.Sequential(
            d2l.FlattenLayer(),
            nn.Linear(num_inputs, num_hiddens),
            nn.ReLU(),
            nn.Linear(num_hiddens, num_outputs), 
            )
        
    for params in net.parameters():
        init.normal_(params, mean=0, std=0.01)
    

    训练

    batch_size = 256
    train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size,root='/home/kesci/input/FashionMNIST2065')
    loss = torch.nn.CrossEntropyLoss()
    
    optimizer = torch.optim.SGD(net.parameters(), lr=0.5)
    
    num_epochs = 5
    d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
    
    epoch 1, loss 0.0031, train acc 0.706, test acc 0.798
    epoch 2, loss 0.0019, train acc 0.822, test acc 0.830
    epoch 3, loss 0.0016, train acc 0.844, test acc 0.848
    epoch 4, loss 0.0015, train acc 0.857, test acc 0.853
    epoch 5, loss 0.0014, train acc 0.865, test acc 0.813
  • 相关阅读:
    JQuery:JQuery语法、选择器、事件处理
    循序渐进DB2(第2版)——DBA系统管理、运维与应用案例
    高级进阶DB2(第2版)——内部结构、高级管理与问题诊断
    DB2数据库性能调整和优化(第2版)
    金融工程中的蒙特卡罗方法
    代数学教程
    拓扑线性空间与算子谱理论
    李代数(第2版)
    编程的修炼(中英双语)
    iOS应用开发详解
  • 原文地址:https://www.cnblogs.com/hichens/p/12309264.html
Copyright © 2011-2022 走看看