zoukankan      html  css  js  c++  java
  • 练习题1

    import torch
    import numpy as np
    import matplotlib.pyplot as plt
    import random
    %matplotlib inline
    

    1.生成数据集

    [oldsymbol{y} = oldsymbol{X}oldsymbol{w} + b + epsilon ]

    其中, 噪声项 (epsilon) 服从均值为0、标准差为0.01的正态分布。
    一些数据已经给出

    num_inputs = 2 # 特征数
    num_examples = 1000 # 样本数
    true_w = [2, -3.4] # 真实的W
    true_b = 4.2 # 真实的b
    
    num_inputs = 2
    num_examples = 1000
    true_w = np.array([2, -3.4])
    true_b = 4.2
    X = np.random.randn(num_examples, num_inputs)
    epson = np.random.normal(0, 0.01, size = X.shape[0])
    y = np.dot(X, true_w) + true_b + epson
    y = torch.from_numpy(y)
    
    # 可视化
    plt.plot(X[:, 1], y.numpy(), 'o')
    

    2.定义一个函数:它每次返回batch_size(批量大小)个随机样本的特征和标签。

    开头已经给出:

    def data_iter(batch_size, features, labels):
    
    def data_iter(batch_size, features, labels):
            indices = list(range(len(features)))
            random.shuffle(indices)
            indices = indices[:batch_size]
            yield features[indices, :], labels[indices]
    

    3.模型的训练一般分为几步

    1. 定义模型
    2. 初始化参数
    3. 定义损失函数
    4. 定义优化算法
    5. 训练模型,导入数据,并调用1234

    4.初始化线性模型的参数w,b

    要求:w为(0, 0.01)分布的正态分布, b 为 0, 并且开启自动梯度

    W = torch.tensor(np.random.normal(0, 0.01, size=(num_inputs, 1)))
    b = torch.zeros(1)
    
    W.requires_grad_(requires_grad=True)
    b.requires_grad_(requires_grad=True)
    

    5.写出sgd优化算法

    def sgd(params, lr, batch_size)
    
    def sgd(params, lr, batch_size):
        for param in params:
            param.data -= lr * param.grad  / batch_size
    

    6.分别使用nn.Module 和 Sequential构建线性模型

    输入:10
    输出:1

    import torch.nn as nn
    class LinearNet(nn.Module):
        def __init__(self):
            super(LinearNet, self).__init__()
            self.Linear = nn.Linear(10, 1)
            
        def forward(self, X):
            return self.Linear(X)
    
    net = nn.Sequential(
        nn.Linear(10, 1)
    )
    
    net = nn.Sequential()
    net.add_module('Lienar', nn.Linear(10, 1))
    
    from  collections import OrderedDict
    net = nn.Sequential(
        OrderedDict([
            ('Linear', nn.Linear(10, 1))
        ])
    )
    
    

    7.实现softmax运算

    def softmax(X):
    
    def softmax(X):
        X_exp = X.exp()
        partition = X_exp.sum()
        return X_exp / partition
    

    8.可以评价模型net在数据集data_iter上的准确率

    def evaluate_accuracy(data_iter, net):
    
    def evaluate_accuracy(data_iter, net):
        acc_sum, n = 0, 0
        for X, y in data_iter:
            acc_sum += (net(X).argmax() == y).sum().item()
            n += y.shape[0]
        return acc_sum / n
    

    9实现交叉熵

    def cross_entropy(y_hat, y):
    
    def cross_entropy(y_hat, y):
        return -torch.log(y_hat.gather(1, y.view(-1, 1))) # 维度, 形状
    

    10.补充如下模型的训练过程

    def train(net, train_iter, test_iter, loss, num_epochs, batch_size,
                  optimizer=None):
    
    def evaluate_accuracy(data_iter, net):
        acc_sum, n = 0, 0
        for X, y in data_iter:
            acc_sum += (net(X).argmax() == y).sum().item()
            n += y.shape[0]
        return acc_sum / n
    
    def train(net, train_iter, test_iter, loss, num_epochs, batch_size,
                  optimizer=None):
        for epoch in range(num_epochs):
            train_l_sum, train_acc_sum, n = 0, 0, 0
            for X, y in train_iter:
                optimizer.zero_grad() # 全部清零
                y_hat = net(X)
                l = loss(y_hat, y)
                l.backward()
                optimizer.step()
                
                train_l_sum += l.item()
                train_acc_sum += (y_hat.argmax() == y).sum().item()
                n += y.shape[0]
                
            test_acc = evaluate_accuracy(data_iter, net)
            printf('epoch %d, loss .4%f, train acc .3%f, test acc .3%f', 
                   epoch, train_l_sum, train_acc_sum, test_acc)            
    

    11.softmax回归的整个实现过程

    1. 定义模型:

    [y = WX +b ]

    1. 初始化参数
      num_inputs = 784
      num_outputs = 10
    2. 定义损失函数:
      交叉熵损失
    3. 定义优化算法:
      SGD
      lr = 1e-3
    4. 训练模型,导入数据,并调用1234

    数据:

    batch_size = 256
    train_iter, test_iter = load_data_fashion_mnist(batch_size)
    
    from torch import nn, optim
    batch_size = 256
    train_iter, test_iter = load_data_fashion_mnist(batch_size)
    
    num_inputs = 784
    num_outputs = 10
    
    net = nn.Sequential(
        nn.Flatten(),
        nn.Linear(num_inputs, num_outputs)
    )
    loss = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=1e-3)
    
    num_epochs = 5
    train(net, train_iter, test_iter, loss, num_epochs, batch_size,
                  optimizer=optimizer)
    

    12.多层感知机(MLP)的整个实现过程

    1. 定义模型:

    [H = W1 X + b1 \ Y = W2 H + b2 ]

    激活函数:relu
    2. 初始化参数
    num_inputs, num_outputs, num_hiddens = 784, 10, 256
    3. 定义损失函数:
    交叉熵损失
    4. 定义优化算法:
    SGD
    lr = 1e-3
    5. 训练模型,导入数据,并调用1234

    数据:

    batch_size = 256
    train_iter, test_iter = load_data_fashion_mnist(batch_size)
    
    from torch import nn, optim
    batch_size = 256
    train_iter, test_iter = load_data_fashion_mnist(batch_size)
    
    num_inputs, num_outputs, num_hiddens = 784, 10, 256
    net = nn.Sequential(
        nn.Flatten(),
        nn.Linear(num_inputs, num_hiddens),
        nn.ReLU(),
        nn.Linear(num_hiddens, num_outputs)
    )
    
    loss = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=1e-3)
    
    num_epochs = 5
    train(net, train_iter, test_iter, loss, num_epochs, batch_size,
             optimizer)
    

    13.减小过拟合的方法有哪些?

    • 权重衰减
    • 丢弃

    14.写出添加了L2范数惩罚项的损失函数

    def Loss(net, X, y, W, b, lambd):
    
    def Loss(net, X, y, W, b, lambd):
        loss = ((net(X, W, b) - y)**2).sum()
        loss += lambd * (W**2).sum()
        return loss
    

    15.给顶丢弃概率drop_prob, 写出dropout函数

    def dropout(X, drop_prob):
    
    def dropout(X, drop_prob):
        assert 0 <= drop_prob <= 1
        keep_prob = 1 - drop_prob
        
        if keep_prob == 0:
            return torch.zeros_like(X.shape)
        
        mask = (torch.rand(X.shape) < keep_prob).float()
        return mask * X 
    
  • 相关阅读:
    TortoiseSVN 使用详细步骤(三):安装
    TortoiseSVN使用详细步骤(二)
    TortoiseSVN使用详细步骤(一)
    IIS7下访问ashx页面,显示404
    Learning Python 008 正则表达式-003 search()方法
    Learning Python 008 正则表达式-002 findall()方法
    Learning Python 008 正则表达式-001
    Learning Python 007 基本语句
    Learning Python 006 list(列表) 和 tuple(元组)
    Learning Python 005 字符串和编码
  • 原文地址:https://www.cnblogs.com/hichens/p/12578135.html
Copyright © 2011-2022 走看看