zoukankan      html  css  js  c++  java
  • 小白学习Spark系列六:Spark调参优化

      前几节介绍了下常用的函数和常踩的坑以及如何打包程序,现在来说下如何调参优化。当我们开发完一个项目,测试完成后,就要提交到服务器上运行,但运行不稳定,老是抛出如下异常,这就很纳闷了呀,明明测试上没问题,咋一到线上就出bug了呢!别急,我们来看下这bug到底怎么回事~

    一、错误分析

      1、参数设置及异常信息

    18/10/08 16:23:51 WARN TransportChannelHandler: Exception in connection from /10.200.2.95:40888
    java.io.IOException: Connection reset by peer
     at sun.nio.ch.FileDispatcherImpl.read0(Native Method)
     at sun.nio.ch.SocketDispatcher.read(SocketDispatcher.java:39)
     at sun.nio.ch.IOUtil.readIntoNativeBuffer(IOUtil.java:223)
     at sun.nio.ch.IOUtil.read(IOUtil.java:192)
     at sun.nio.ch.SocketChannelImpl.read(SocketChannelImpl.java:380)
     at io.netty.buffer.PooledUnsafeDirectByteBuf.setBytes(PooledUnsafeDirectByteBuf.java:221)
     at io.netty.buffer.AbstractByteBuf.writeBytes(AbstractByteBuf.java:899)
     at io.netty.channel.socket.nio.NioSocketChannel.doReadBytes(NioSocketChannel.java:275)
     at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:119)
     at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:652)
     at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:575)
     at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:489)
     at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:451)
     at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:140)
     at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:144)
     at java.lang.Thread.run(Thread.java:745)
    18/10/08 16:23:51 ERROR TransportResponseHandler: Still have 1 requests outstanding when connection from /10.200.2.95:40888 is closed

      2、分析原因

      运行的程序其实逻辑上比较简单,只是从hive表里读取的数据量很大,差不多60+G,并且需要将某些hive表读取到dirver节点上,用来获取每个executor上某些数据的映射值,所以driver设定的资源较大。运行时抛出的异常信息,从网上查了下原因大致是服务器的并发连接数超过了其承载量,服务器会将其中一些连接Down掉,这也就是说在运行spark程序时,过多的申请资源并发执行。那应该怎样去合理设置参数才能最大化提升并发的性能呢?这些参数又分别代表什么?

    二、常见参数及含义

    常用参数

    含义及建议

    spark.executor.memory

    (--executor-memory)

    含义:每个执行器进程分配的内存

    建议:该设置需要和下面的executor-num数一起考虑,一般设置为4G~8G如果和其他人共用队列,为防止独占资源建议memory*num <= 资源队列最大总内存*(1/2~1/3)

    spark.executor.num

    (--executor-num)

    含义:设置用来执行spark作业的执行器进程的个数

    建议:一般设置为50~100个,设置太少会导致无法充分利用资源,太多又导致大部分任务分配不到充足的资源

    spark.executor.cores

    (--executor-cores)

    含义:每个执行器进程的cpu core数量,决定了执行器进程并发执行task线程的个数,一个core同一时间只能执行一个task线程。如果core数量越多,完成自己task越快。

    建议:一般设置2~4个,需要和executor-num一起考虑,num*core<=队列总core*(1/2~1/3)

    spark.driver.memory

    (--driver-memory)

    含义:设置驱动进程的内存

    建议:driver一般不设置,默认的就可以,不过如果你在程序中需要使用collect算子拉取rdd到驱动节点上,那就得设置相应的内存大小(大于几十k建议使用广播变量)

    spark.default.parallelism

    含义:设置每个stage的默认任务数量

    建议:官方建议设置为 executor-num*executor-cores的2~3倍

    spark.storage.memoryFraction

    含义:默认Executor 60%的内存,可以用来保存持久化的RDD数据

    建议:spark作业中,如果有较多rdd需要持久化,该参数可适当提高一些,保证持久化的数据存储在内存中,避免被写入磁盘影响运行速度。如果shuffle类操作较多,可调低该参数。并且如果由于频繁的垃圾回收导致运行缓慢,证明执行task的内存不够用,建议调低该参数。

    spark.shuffle.memoryFraction

    含义:设置shuffle过程中一个task拉取到上个stage的task的输出后,进行聚合操作时能够使用的Executor内存的比例

    建议:shuffle操作在进行聚合时,如果发现使用的内存超出了这个20%的限制,那么多余的数据就会溢写到磁盘文件中去,此时就会极大地降低性能。结合上一个参数调整。

    spark.speculation

    含义:设为true时开启task预测执行机制。当出现较慢的任务时,这种机制会在另外的节点尝试执行该任务的一个副本。

    建议:true,打开此选项会减少大规模集群中个别较慢的任务带来的影响。

    spark.storage.blockManagerTimeoutIntervalMs

    含义:内部通过超时机制追踪执行器进程是否存活的阈值。

    建议:对于会引发长时间垃圾回收(GC)暂停的作业,需要把这个值调到100秒(100000)以防止失败。

    spark.sql.shuffle.partitions

    含义:配置join或者聚合操作shuffle数据时分区的数量,默认200

    建议:同spark.default.parallelism

    三、实践

      通过适当调整以上讲到的几个参数,降低spark.default.parallelism的同时又设置了spark.sql.shuffle.partitions、spark.speculation、spark.storage.blockManagerTimeoutIntervalMs三个参数。由于项目中频繁的读取hive表数据,并进行连接操作,所以在shuffle阶段增大了partitions。对于woker倾斜,设置spark.speculation=true,把预测不乐观的节点去掉来保证程序可稳定运行,通过这几个参数的调整这样并大大减少了运行时间。

     

  • 相关阅读:
    NYOJ228 士兵杀敌(五)
    NYOJ236 彩色棒 字典树 + 并查集 + 欧拉路
    给大家推荐一个用电脑拨打普通电话的软件skype
    转:甲骨文将以74亿美元收购太阳微系统公司
    花生壳原理求解
    利用IHttpModule及Session_End事件进行在线会员统计遇到的问题
    我的开发环境介绍及一个 Expression Bland 画图形的例子
    WF (Windows Workflow Foundation) 工作流学习(二)一个Asp.Net 与 顺序工作流 结合的例子
    WPF 、WinFrom 调用顺序工作流的登陆窗口例子
    Expression Bland 入门视频(三) 菜单、项目面板及工作区介绍
  • 原文地址:https://www.cnblogs.com/hithink/p/9858206.html
Copyright © 2011-2022 走看看