之前写过一篇cdq分治模拟树状数组
附上链接
然鹅属于二位偏序欸
三位偏序怎么做呢?
我们把第一位排好序忽略掉
剩下的在分治中用树状数组维护就好啦
大概思路如下:
- 判边界,下放分治
- 对当前范围按第二维,左边的第三维值插入树状数组,右边的查询
- 像归并排序一样归位
代码如下
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <queue>
using namespace std;
const int N = (int)2e6 + 5;
int n, m;
struct FW{
int c[N];
void ins(int x, int d){
while(x <= m){
c[x] += d;
x += x & -x;
}
}
int query(int x){
int res = 0;
while(x >= 1){
res += c[x];
x -= x & -x;
}
return res;
}
void print(){
for(int i = 1; i <= m; ++i) printf("%d ", c[i]);
printf("
");
}
}fw;
struct A{
int x, y, z, ans, size;
}a[N], t[N];
int cnt[N], size[N];
bool rule_xyz(A x, A y){
if(x.x != y.x) return x.x < y.x;
if(x.y != y.y) return x.y < y.y;
return x.z < y.z;
}//不要用<= 会爆炸!
bool rule_yzx(A x, A y){
if(x.y != y.y) return x.y < y.y;
if(x.z != y.z) return x.z < y.z;
return x.x < y.x;
}
void cdq(int l, int r){
if(r <= l) return ;
//printf("%d %d
", l, r);
int mid = l + ((r - l) >> 1);
cdq(l, mid); cdq(mid + 1, r);
//printf("l %d r %d
", l, r);
sort(a + l, a + mid + 1, rule_yzx);
sort(a + mid + 1, a + r + 1, rule_yzx);
int i = l, j = mid + 1, tsize = 0;
while(i <= mid && j <= r){
if(a[i].y <= a[j].y){
fw.ins(a[i].z, a[i].size);
t[++tsize] = a[i++];
}
else {
a[j].ans += fw.query(a[j].z);
t[++tsize] = a[j++];
}
}
while(i <= mid){
fw.ins(a[i].z, a[i].size);
t[++tsize] = a[i++];
}
while(j <= r){
a[j].ans += fw.query(a[j].z);
// printf("%d %d
", a[j].id, fw.query(a[j].z));
t[++tsize] = a[j++];
}
for(i = l; i <= mid; ++i)
fw.ins(a[i].z, -a[i].size);
for(i = 1; i <= tsize; ++i){
a[l + i - 1] = t[i];
}
//fw.print();
}
int main() {
freopen("flower.in", "r", stdin);
scanf("%d%d", &n, &m); ++m;
for(int i = 1; i <= n; ++i){
scanf("%d%d%d", &a[i].x, &a[i].y, &a[i].z); ++a[i].z;
}
sort(a + 1, a + n + 1, rule_xyz);
int tn = n; n = 0;
for(int i = 1; i <= tn; ++i){
if(a[i].x == a[i - 1].x && a[i].y == a[i - 1].y && a[i].z == a[i - 1].z){
++a[n].size;
}
else {
a[++n] = a[i];
a[n].size = 1;
}
}
cdq(1, n);
for(int i = 1; i <= n; ++i){
a[i].ans += a[i].size - 1;//要记得考虑相等点的影响!
cnt[a[i].ans] += a[i].size;
}
for(int i = 0; i < tn; ++i){
printf("%d
", cnt[i]);
}
return 0;
}