zoukankan      html  css  js  c++  java
  • CF_Edu.#51_Div.2_1051F_The Shortest Statement

    F. The Shortest Statement

    time limit per test:4 seconds
    memory limit per test:256 megabytes
    input:standard input
    output:standard output

    You are given a weighed undirected connected graph, consisting of (n) vertices and (m) edges.

    You should answer (q) queries, the i-th query is to find the shortest distance between vertices (u_i) and (v_i).

    给定n个点,m条边,q个询问,求每次询问的两点间的最短路。

    Input

    The first line contains two integers (n) and (m (1≤n,m≤10^5,m−n≤20)) — the number of vertices and edges in the graph.

    Next (m) lines contain the edges: the i-th edge is a triple of integers (v_i,u_i,d_i (1≤u_i,v_i≤n,1≤d_i≤10^9,u_i≠v_i)). This triple means that there is an edge between vertices ui and vi of weight (d_i). It is guaranteed that graph contains no self-loops and multiple edges.

    The next line contains a single integer (q (1≤q≤10^5)) — the number of queries.

    Each of the next (q) lines contains two integers (u_i) and (v_i (1≤u_i,v_i≤n)) — descriptions of the queries.

    Pay attention to the restriction (m−n ≤ 20).

    Output

    Print(q)lines.

    The i-th line should contain the answer to the i-th query — the shortest distance between vertices (u_i) and (v_i).

    Examples

    Input

    3 3
    1 2 3
    2 3 1
    3 1 5
    3
    1 2
    1 3
    2 3

    Output

    3
    4
    1

    Input

    8 13
    1 2 4
    2 3 6
    3 4 1
    4 5 12
    5 6 3
    6 7 8
    7 8 7
    1 4 1
    1 8 3
    2 6 9
    2 7 1
    4 6 3
    6 8 2
    8
    1 5
    1 7
    2 3
    2 8
    3 7
    3 4
    6 8
    7 8

    Output

    7
    5
    6
    7
    7
    1
    2
    7

    SOLUTION

    本题一开始说是要求(n=10^5)的多源最短路我被吓到了,裸做单源最短路是不可能的,就又看到了边数的限制:(m-nleq 20)
    这就意味着,在n,m很大的绝大多数情况下,20并不能造成很大的影响。

    所以换而言之,这题的模型可以近似地看作是一棵树。因为对于绝大多数的点来说,它们要走的最短路径的确全是树上路径。

    树上最短路?求LCA啊。这样我们就可以解决绝大多数的点。

    不过那20条边的确不能忽视,因为可能存在更优解要经过那21条边中的一些。而那21条边影响的是什么呢?当然是每条边的两个端点分别关于其他点的最短路啊(存这种端点的时候一定记得要去重!!!)。因为本题的余边只有21条,就可以考虑暴力做至多42遍dijkstra。。。得到了关于以编号为(j)的点为起点,图上点(i)的单源最短路数组(dp[i][j])

    所以到了最后,我们可以得出,在本题内,最短路的答案要么只从树上的LCA算得,要么就可能走那多余的21条边。

    这题是根据数据性质来猜正解的好题。

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <algorithm>
    #include <queue>
    using namespace std;
    typedef long long LL;
    #define Min(a,b) ((a<b)?a:b)
    #define Max(a,b) ((a>b)?a:b)
    const int N=101000,MN=45;
    inline int read(){
    	int x=0,f=1;char ch=getchar();
    	while (ch<'0'||ch>'9') {if (ch=='-') f=-1;ch=getchar();}
    	while (ch>='0'&&ch<='9') {x=x*10+ch-48;ch=getchar();}
    	return x*f;}
    struct EDGE{int nxt,to,w;}e[2*N];
    int n,m,Q,low[N],vis[N],fa[N][20],head[N],dpt[N],nd[MN],used[N],cnt=0,cnt2=0;
    LL dist[N][MN],dist2[N];
    inline void add(int u,int v,int w){e[++cnt].nxt=head[u];e[cnt].to=v;e[cnt].w=w;head[u]=cnt;}
    void dfs(int u,int fath){
    	used[u]=1;dpt[u]=dpt[fath]+1;fa[u][0]=fath;
    	for (int i=1;i<=low[dpt[u]];++i){fa[u][i]=fa[fa[u][i-1]][i-1];}
    	for (int i=head[u];i;i=e[i].nxt){
    		int v=e[i].to,w=e[i].w;
    		if (v==fath) continue;
    		if (!used[v]) {dist2[v]=dist2[u]+w;dfs(v,u);}
    			else{if (used[u]==1) nd[++cnt2]=u,used[u]++;
    				 if (used[v]==1) nd[++cnt2]=v,used[v]++;}
    	}
    }
    struct NODE{LL d;int u;bool operator< (const NODE &a)const{return d>a.d;}};
    void dij(int stt,int now){
    	for (int i=1;i<=n;++i) dist[i][now]=1e18+7;
    	priority_queue<NODE> q;q.push((NODE){0,stt});dist[stt][now]=0;
    	memset(vis,0,sizeof(vis));
    	while (!q.empty()){
    		NODE ntp=q.top();q.pop();
    		int u=ntp.u;
    		if (vis[u]) continue;
    		vis[u]=1;
    		for (int i=head[u];i;i=e[i].nxt){
    			int v=e[i].to,w=e[i].w;
    			if (dist[v][now]>dist[u][now]+w){
    				dist[v][now]=dist[u][now]+w;
    				q.push((NODE){dist[v][now],v});
    			}
    		}
    	}
    }
    inline int lca(int x,int y){
    	if (dpt[x]<dpt[y]) swap(x,y);
    	while (dpt[x]>dpt[y]) {x=fa[x][low[dpt[x]-dpt[y]]];}
    	if (x==y) return x;
    	for (int i=low[dpt[x]];i>=0;--i)
    		if (fa[x][i]!=fa[y][i]) x=fa[x][i],y=fa[y][i];
    	return fa[x][0];}
    int main(){
    	int i,j;
    	n=read();m=read();memset(head,0,sizeof(head));
    	memset(used,0,sizeof(used));memset(dist2,0,sizeof(dist2));
    	for (i=1;i<=m;++i){
    		int u=read(),v=read(),w=read();add(u,v,w);add(v,u,w);}
    	low[1]=0;for (i=2;i<=n;++i) low[i]=low[i>>1]+1;
    	dpt[0]=0;dfs(1,0);
    //	sort(nd+1,nd+1+cnt2);cnt2=unique(nd+1,nd+1+cnt2)-nd-1;
    	for (i=1;i<=cnt2;++i) {int stt=nd[i];dij(stt,i);}
    	Q=read();
    	for (i=1;i<=Q;++i){
    		int u=read(),v=read();
    		int ast=lca(u,v);
    		LL DIST=dist2[u]+dist2[v]-dist2[ast]*2;
    		for (j=1;j<=cnt2;++j) DIST=Min(DIST,dist[u][j]+dist[v][j]);
    		printf("%I64d
    ",DIST);
    	}
    	return 0;
    }
    
  • 相关阅读:
    up6-chrome 45+安装教程
    HttpUploader7-授权码配置
    jsp-MySQL连接池
    WordPaster2-正式包布署说明
    HTTP文件上传插件开发文档-ASP
    HTTP文件上传插件开发文档-JSP
    eWebEditor9.x整合教程-Xproer.WordPaster
    42. Trapping Rain Water
    41. First Missing Positive
    40. Combination Sum II
  • 原文地址:https://www.cnblogs.com/hkpls/p/9919577.html
Copyright © 2011-2022 走看看