链接:
https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=3185
题意:
A、B两人赛马,最终名次有3种可能:并列第一;A第一B第二;B第一A第二。
输入n(1≤n≤1000),求n人赛马时最终名次的可能性的个数除以10056的余数。
分析:
设答案为f(n)。假设第一名有i个人,有C(n,i)种可能性,接下来有f(n-i)种可能性,因此答案为∑C(n,i)f(n-i)。
组合数的计算可以用杨辉三角递推。
代码:
1 import java.io.*; 2 import java.util.*; 3 4 public class Main { 5 static final int MOD = 10056; 6 static final int UP = 1000 + 5; 7 static int f[] = new int[UP], C[][] = new int[UP][UP]; 8 9 static void constant() { 10 for(int n = 0; n < UP; n++) { 11 C[n][0] = C[n][n] = 1; 12 for(int m = 1; m < n; m++) 13 C[n][m] = (C[n-1][m-1] + C[n-1][m]) % MOD; 14 } 15 16 f[0] = 1; 17 for(int n = 1; n < UP; n++) 18 for(int i = 1; i <= n; i++) 19 f[n] = (f[n] + C[n][i] * f[n-i]) % MOD; 20 } 21 22 public static void main(String args[]) { 23 Scanner cin = new Scanner(new BufferedInputStream(System.in)); 24 constant(); 25 26 int T = cin.nextInt(); 27 for(int cases = 1; cases <= T; cases++) { 28 int n = cin.nextInt(); 29 System.out.printf("Case %d: %d ", cases, f[n]); 30 } 31 cin.close(); 32 } 33 }