zoukankan      html  css  js  c++  java
  • HDU 3579 Hello Kiki

    Hello Kiki

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
    Total Submission(s): 2223    Accepted Submission(s): 804


    Problem Description
    One day I was shopping in the supermarket. There was a cashier counting coins seriously when a little kid running and singing "门前大桥下游过一群鸭,快来快来 数一数,二四六七八". And then the cashier put the counted coins back morosely and count again...
    Hello Kiki is such a lovely girl that she loves doing counting in a different way. For example, when she is counting X coins, she count them N times. Each time she divide the coins into several same sized groups and write down the group size Mi and the number of the remaining coins Ai on her note.
    One day Kiki's father found her note and he wanted to know how much coins Kiki was counting.
     
    Input
    The first line is T indicating the number of test cases.
    Each case contains N on the first line, Mi(1 <= i <= N) on the second line, and corresponding Ai(1 <= i <= N) on the third line.
    All numbers in the input and output are integers.
    1 <= T <= 100, 1 <= N <= 6, 1 <= Mi <= 50, 0 <= Ai < Mi
     
    Output
    For each case output the least positive integer X which Kiki was counting in the sample output format. If there is no solution then output -1.
     
    Sample Input
    2
    2
    14 57
    5 56
    5
    19 54 40 24 80
    11 2 36 20 76
     
    Sample Output
    Case 1:
    341
    Case 2:
    5996
     
    Author
    digiter (Special Thanks echo)
     

    两两求线性同余方程。

    #include <iostream>
    #include <string.h>
    #include <stdio.h>
    #include <algorithm>
    #include <cmath>
    using namespace std;
    typedef long long LL;
    const double PI = acos(-1.0);
    
    LL n , _ ,cas = 1 , a[12] , r[12] ;
    
    void e_gcd( LL a ,LL b , LL &d , LL &x, LL &y  )
    {
        if( b == 0 ){ x = 1 , y = 0 , d = a ; return ; }
        e_gcd( b, a%b , d, y ,x ) ;
        y -= x*( a/b );
    }
    
    LL gcd( LL a , LL b ){ return b == 0 ? a : gcd( b , a%b ) ;}
    
    
    void run()
    {
        LL lcm = 1 ;
        cin >> n ;
        for( int i = 0 ; i < n ; ++i ){
            cin >> a[i] ;
            lcm = lcm / gcd( lcm , a[i] ) * a[i] ;
        }
        for( int i = 0 ; i < n ; ++i ){
            cin >> r[i];
        }
        for( int i = 1 ; i < n ; ++i ) {
            LL d , x , y , A = a[0] , B = a[i] , c = r[i] - r[0] ;
            e_gcd(A,B,d,x,y) ;
            if( c % d ) { cout << "-1" <<endl ; return ; }
            LL b1 = B / d ;
            x *= c / d;
            x = ( x % b1 + b1 ) % b1;
            r[0] = a[0] * x + r[0] ;
            a[0] = a[0] *( a[i] / d );
        }
        if( r[0] == 0 )
            cout<< lcm <<endl ;
        else
            cout << r[0] <<endl;
    }
    
    int main()
    {
        #ifdef LOCAL
            freopen("in.txt","r",stdin);
        #endif // LOCAL
        ios::sync_with_stdio(0);
        cin >> _ ;
        while( _-- ){
            cout <<"Case "<< cas++ << ": ";
            run();
        }
    
    }
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    看到你还在用Maven,Gradle难道不香吗?
    技术干货|完美搭建web自动化环境
    使用可视化的Docker进行自动化测试
    使用Robot Framework实现多平台自动化测试
    还在手工写接口测试文档吗,已经out了
    巧用Python脚本解决自动化图形验证码难题
    为什么要进行URL编码
    C# (CLR) 中内存分配解析
    DIV+CSS规范命名大全集合
    Memcached集群/分布式/高可用 及 Magent缓存代理搭建过程 详解
  • 原文地址:https://www.cnblogs.com/hlmark/p/4002699.html
Copyright © 2011-2022 走看看