zoukankan      html  css  js  c++  java
  • Codefores 507B Amr and Pins

    B. Amr and Pins
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Amr loves Geometry. One day he came up with a very interesting problem.

    Amr has a circle of radius r and center in point (x, y). He wants the circle center to be in new position (x', y').

    In one step Amr can put a pin to the border of the circle in a certain point, then rotate the circle around that pin by any angle and finally remove the pin.

    Help Amr to achieve his goal in minimum number of steps.

    Input

    Input consists of 5 space-separated integers r, x, y, x' y' (1 ≤ r ≤ 105,  - 105 ≤ x, y, x', y' ≤ 105), circle radius, coordinates of original center of the circle and coordinates of destination center of the circle respectively.

    Output

    Output a single integer — minimum number of steps required to move the center of the circle to the destination point.

    Sample test(s)
    Input
    2 0 0 0 4
    Output
    1
    Input
    1 1 1 4 4
    Output
    3
    Input
    4 5 6 5 6
    Output
    0
    Note

    In the first sample test the optimal way is to put a pin at point (0, 2) and rotate the circle by 180 degrees counter-clockwise (or clockwise, no matter).

    画个图可发现到以圆的边界为转动中心,可以到达的新的圆的中心集也是一个圆。

    且原点x , y 到点x' , y'的关系.

    是sqrt ((x-x')^2 + (y-y')^2) ..与 2*R的距离有关的。

    #include<bits/stdc++.h>
    using namespace std;
    int main()
    {
        double r , x0 , y0 , x1 , y1 ;
        while( cin >> r >> x0 >> y0 >> x1 >> y1 ) {
            r *= 2.0 ;
            double a = fabs(x1-x0) / r , b = fabs(y1-y0) / r ;
            double c = sqrt( a*a + b*b );
            printf("%.0lf
    ",ceil(c));
        }
    }
    View Code
    only strive for your goal , can you make your dream come true ?
  • 相关阅读:
    DNS 查询长度
    WebSocket
    Overview of cookie persistence
    Linux Cluster
    keepalived + nginx 主主模式
    MIME 类型
    IaaS,PaaS,SaaS 的区别
    Linux下"负载均衡+高可用"集群的考虑点 以及 高可用方案说明(Keepalive/Heartbeat)
    交换机链路聚合与Linux的bond模式对照
    DHCP 中继
  • 原文地址:https://www.cnblogs.com/hlmark/p/4246672.html
Copyright © 2011-2022 走看看