zoukankan      html  css  js  c++  java
  • CodeChef Gcd Queries

    Gcd Queries

     
    Problem code: GCDQ
     

    All submissions for this problem are available.

    Read problems statements in Mandarin Chinese and Russian.

    You are given an array A of integers of size N. You will be given Q queries where each query is represented by two integers L, R. You have to find the gcd(Greatest Common Divisor) of the array after excluding the part from range L to R inclusive (1 Based indexing). You are guaranteed that after excluding the part of the array
    remaining array is non empty.

    Input

    • First line of input contains an integer T denoting number of test cases.
    • For each test case, first line will contain two space separated integers N, Q.
    • Next line contains N space separated integers denoting array A.
    • For next Q lines, each line will contain a query denoted by two space separated integers L, R.

    Output

    For each query, print a single integer representing the answer of that query.

    Constraints

    Subtask #1: 40 points

    • 2 ≤ T, N ≤ 100, 1 ≤ Q ≤ N, 1 ≤ A[i] ≤ 105
    • 1 ≤ L, R ≤ N and L ≤ R

    Subtask #2: 60 points

    • 2 ≤ T, N ≤ 105, 1 ≤ Q ≤ N, 1 ≤ A[i] ≤ 105
    • 1 ≤ L, R ≤ N and L ≤ R
    • Sum of N over all the test cases will be less than or equal to 106.

    Example

    Input:
    1
    3 3
    2 6 9
    1 1
    2 2
    2 3
    
    Output:
    3
    1
    2
    

    Explanation

    For first query, the remaining part of array will be (6, 9), so answer is 3.
    For second query, the remaining part of array will be (2, 9), so answer is 1.
    For third query, the remaining part of array will be (2), so answer is 2.

    Warning : Large IO(input output), please use faster method for IO.

    求一个序列删去L~R后其余数的GCD ,,直接预处理一下前序GCD,后序GCD就OK~

    #include <bits/stdc++.h>
    using namespace std;
    const int N = 100010;
    int e[N],L[N],R[N],n,Q;
    void Run() {
        scanf("%d%d",&n,&Q);
        for( int i = 1 ; i <= n ; ++i ) scanf("%d",&e[i]);
        L[1] = e[1]; for( int i = 2 ; i <= n ; ++i ) L[i] = __gcd( e[i] , L[i-1] ) ;
        R[n] = e[n]; for( int i = n-1 ; i >= 1 ; --i ) R[i] = __gcd( e[i] , R[i+1] ) ;
        while(Q--){
            int x , y ;
            scanf("%d%d",&x,&y);
            if( x > 1 ) {
                if( y < n )printf("%d
    ",__gcd(L[x-1],R[y+1]));
                else printf("%d
    ",L[x-1]);
            }
            else {
                if( y < n )printf("%d
    ",R[y+1]);
                else puts("1");
            }
        }
    }
    int main()
    {
        int _ , cas = 1 ;
        scanf("%d",&_);
        while(_--)Run();
    }
    View Code
  • 相关阅读:
    ASP.NET2.0中将文件上传到数据库
    C#中数据类型转换
    数据绑定以及Container.DataItem的具体分析
    CodeSmith开发系列资料总结
    Jquery信息专题收集
    microsoft .net framework专题汇总
    ASP.NET中插入FLASH代码
    javascript专题汇总
    经典SQL行列转换
    前台js调用后台c#方法
  • 原文地址:https://www.cnblogs.com/hlmark/p/4296959.html
Copyright © 2011-2022 走看看