zoukankan      html  css  js  c++  java
  • HDU 1024 Max Sum Plus Plus (递推)

    Max Sum Plus Plus

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 18653    Accepted Submission(s): 6129


    Problem Description
    Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

    Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

    Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

    But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
     
    Input
    Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
    Process to the end of file.
     
    Output
    Output the maximal summation described above in one line.
     
    Sample Input
    1 3
    1 2 3
    2 6
    -1 4 -2 3 -2 3
     
    Sample Output
    6 8
    Hint
    Huge input, scanf and dynamic programming is recommended.

    dp[i][j][0] ... 表示前i个数分成j个组,不选第i个数的最大得分

    dp[i][j][1] ... 表示前i个数分成j个组,选第i个数的最大得分

    因为状态i只跟状态i-1, 所以可以用滚动数组来减空间

    取最要自己写 。 否则卡常数会超时

    #include <iostream>
    #include <cstring>
    #include <cstdio>
    #include <algorithm>
    
    using namespace std ;
    const int N = 100010;
    const int inf = 1e9+7;
    
    int dp[2][N][2] , n , m , x[N] ;
    inline int MAX( int a , int b ) {
        if( a > b ) return a ;
        else return b ;
    }
    int main() {
    //    freopen("in.txt","r",stdin);
        while( ~scanf("%d%d",&m,&n) ) {
            for( int i = 1 ; i <= n ; ++i ) {
                scanf("%d",&x[i]);
            }
            int v = 0 ;
            dp[v][0][0] = 0 ;
            dp[v][1][1] = x[1] ;
            for( int i = 1 ; i < n ; ++i ) {
                for( int j = 0 ; j <= i + 1 && j <= m ; j++ ) {
                    dp[v^1][j][0] = dp[v^1][j][1] = -inf ;
                }
                for( int j = min( m , i ) ; j >= 0 ; --j ) {
                    if( j != i ) {
                        dp[v^1][j+1][1] = MAX( dp[v][j][0] + x[i+1] , dp[v^1][j+1][1] );
                        dp[v^1][j][0] = MAX( dp[v][j][0] , dp[v^1][j][0]);
                    }
                    if( j != 0 ) {
                        dp[v^1][j][1] =  MAX ( dp[v^1][j][1] , dp[v][j][1] + x[i+1] ) ;
                        dp[v^1][j+1][1] = MAX ( dp[v^1][j+1][1] , dp[v][j][1] + x[i+1] ) ;
                        dp[v^1][j][0] = MAX ( dp[v^1][j][0] , dp[v][j][1] ) ;
                    }
                }
                v ^= 1 ;
            }
            int ans = -inf ;
            if( m < n ) ans = MAX( ans , dp[v][m][0] );
            if( m > 0 ) ans = MAX( ans , dp[v][m][1] );
            printf("%d
    ",ans);
        }
        return 0 ;
    }
    View Code
  • 相关阅读:
    古典兔子问题
    (I/O流)在100ms内桌面上生成一个200M大小的文件
    搭建手机UI自动化
    关于String path = request.getContextPath(); String basePath = request.getScheme()+"://"+request.getServerName()+":"+request.getServerPort()+path+"/";
    关于数据库范式的理解
    Orcl分页查询的语法示例
    Eclipse alt+/语法不提示的解决方法
    redis 使用rdb从高版本迁移至低版本
    redis集群详解
    Linux firewall防火墙设置
  • 原文地址:https://www.cnblogs.com/hlmark/p/4373958.html
Copyright © 2011-2022 走看看