zoukankan      html  css  js  c++  java
  • 函数在某点可导与可微~

    (1)函数在某点可导的定义

     大白话解释函数在某点可导:就是有一个以X0为中点,距离X0长度为R的区间内,任取一点X1,X1-X0=X的增量,X的增量可正可负。当增量y/增量X极限存在时,这个函数在X0点可导。

    所以你可以想一下,对于函数在某一段内处处可导,那么必然这段线段是光滑的,也就是说没有突变,尖角处即为突变,尖角为不可导。

    说明一下,为什么尖角不可导:(只举例向下尖角,同理可以推导出其它方向尖角的情况)

    想象一下,如果函数在某处为尖角,那么对于自变量点X0的右边增量为正增量,y增量为正,两者相除为右极限,右极限为正,

    对于左极限,自变量点X0的左边增量为负增量,y增量为正,左极限为负。所以左右极限不等,自然在这点没有极限,所以这点自然不可导。

    (2)函数在某点可微的定义

      大白话解释函数在某点可微:就是有一个以X0为中点,距离X0长度为R的区间内,任取一点X1,X1-X0=X的增量,X的增量可正可负。增量y=(常数) 乘以 (X增量)+ (X增量的高阶无穷小),注A是不依赖于X的增量的常数,也就是说A的取值不会因为X的增量改变而有所不同的常数。

    所以你可以想一下,对于函数在某一段内处处可微,那么必然这段线段是光滑的,也就是说没有突变,尖角处即为突变,尖角为不可微。

    说明一下,为什么尖角不可微:(只举例向下尖角,同理可以推出其它方向尖角的情况)

    对于向下尖角这种情况,首先,X增量在右边为正,左边为负数。y增量为正,要保持y增量为正,那么当X增量为正数时,常数A必须为正;当X增量为负数时,常数A必须为负。

    这样一来,常数A就发生了改变,与定义A是不依赖于X的增量的常数相互矛盾,所以尖角不可微。

    (3)函数在某点的可微与可导的关系

     对于非数学专业,这个记住即可,因为如果每个定义都给予证明,我相信,一个人是无法大量使用每一个工具的。

    证明过程:

     

  • 相关阅读:
    2021,6,10 xjzx 模拟考试
    平衡树(二)——Treap
    AtCoder Beginner Contest 204 A-E简要题解
    POJ 2311 Cutting Game 题解
    Codeforces 990G GCD Counting 题解
    NOI2021 SDPTT D2T1 我已经完全理解了 DFS 序线段树 题解
    第三届山东省青少年创意编程与智能设计大赛总结
    Luogu P6042 「ACOI2020」学园祭 题解
    联合省选2021 游记
    Codeforces 1498E Two Houses 题解 —— 如何用结论吊打标算
  • 原文地址:https://www.cnblogs.com/hmy-666/p/12785917.html
Copyright © 2011-2022 走看看