You are given a permutation of the numbers 1, 2, ..., n and m pairs of positions (aj, bj).
At each step you can choose a pair from the given positions and swap the numbers in that positions. What is the lexicographically maximal permutation one can get?
Let p and q be two permutations of the numbers 1, 2, ..., n. p is lexicographically smaller than the q if a number 1 ≤ i ≤ n exists, so pk = qk for 1 ≤ k < i and pi < qi.
The first line contains two integers n and m (1 ≤ n, m ≤ 106) — the length of the permutation p and the number of pairs of positions.
The second line contains n distinct integers pi (1 ≤ pi ≤ n) — the elements of the permutation p.
Each of the last m lines contains two integers (aj, bj) (1 ≤ aj, bj ≤ n) — the pairs of positions to swap. Note that you are given a positions, not the values to swap.
Print the only line with n distinct integers p'i (1 ≤ p'i ≤ n) — the lexicographically maximal permutation one can get.
9 6
1 2 3 4 5 6 7 8 9
1 4
4 7
2 5
5 8
3 6
6 9
7 8 9 4 5 6 1 2 3
思路:可以先将所有可以交换的区间用并查集合并,然后用多个大根堆维护并查集的根可以的数字,最后只需依次将根可以的最小数字放到数组中即可,放一个数字则删除根元素。
#include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<algorithm> #include<cstring> #include<string> #include<vector> #include<map> #include<set> #include<queue> using namespace std; priority_queue<int> ans[1000001]; int n,m,p[1000001],father[1000001]; int ask(int x) { if (father[x]==x) return x; father[x]=ask(father[x]); return father[x]; } void hebin(int x,int y) { int p=ask(x); int q=ask(y); if (p!=q) father[p]=q; } int main() { scanf("%d%d",&n,&m); int i; for (i=1;i<=n;i++) { scanf("%d",&p[i]); father[i]=i; } while (m--) { int x,y; scanf("%d%d",&x,&y); hebin(x,y); } for (i=1;i<=n;i++) ans[father[ask(i)]].push(p[i]); for (i=1;i<=n;i++) { printf("%d ",ans[father[i]].top()); ans[father[i]].pop(); } return 0; }