zoukankan      html  css  js  c++  java
  • C 语言高效编程的几招

    编写高效简洁的C语言代码,是许多软件工程师追求的目标。本文就工作中的一些体会和经验做相关的阐述,不对的地方请各位指教。

    第 1 招:以空间换时间

    计算机程序中最大的矛盾是空间和时间的矛盾,那么从这个角度出发逆向思维来考虑程序的效率问题,我们就有了解决问题的第1招--以空间换时间。

    例如:字符串的赋值。

    方法 A,通常的办法:

    #define LEN 32

    char string1 [LEN];

    memset (string1,0,LEN);

    strcpy (string1,"This is an example!!"

    方法 B:

    const char string2[LEN]="This is an

    char*cp;

    cp=string2;

    (使用的时候可以直接用指针来操作。)

    从上面的例子可以看出,A和 B的效率是不能比的。在同样的存储空间下,B直接使用指针就可以操作了,而 A 需要调用两个字符函数才能完成。B的缺点在于灵活性没有 A好。在需要频繁更改一个字符串内容的时候,A 具有更好的灵活性;如果采用方法 B,则需要预存许多字符串,虽然占用了
    大量的内存,但是获得了程序执行的高效率。

    如果系统的实时性要求很高,内存还有一些,那我推荐你使用该招数。该招数的边招--使用宏函数而不是函数。举例如下:

    方法C:

    #define bwMCDR2_ADDRESS 4

    #define bsMCDR2_ADDRESS 17

    int BIT_MASK (int_bf)

    {

    return ((IU<<(bw##_bf))-1)<<(bs##_bf);

    }

    void SET_BITS(int_dst,int_bf,int_val)

    {

    _dst=((_dst) & ~ (BIT_MASK(_bf)))I\

    (((_val)<<<(bs##_bf))&(BIT_MASK(_bf)))

    }

    SET_BITS (MCDR2,MCDR2_ADDRESS,RegisterNumber);

    方法D:

    #define bwMCDR2_ADDRESS 4

    #define bsMCDR2_ADDRESS 17

    #define bmMCDR2_ADDRESS BIT_MASK

    (MCDR2_ADDRESS)

    #define BIT_MASK(_bf)(((1U<<(bw##_bf))-1)<<

    (bs##_bf)

    #define SET_BITS(_dst,_bf,_val)\

    ((_dst)=((_dst)&~(BIT_MASK(_bf)))I

    (((_val)<<(bs##_bf))&(BIT_MASK(_bf))))

    SET_BITS(MCDR2,MCDR2_ADDRESS,RegisterNumber);

    函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要一些CPU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函数的时候,该现象尤其突出。

    函数和宏函数的区别就在于,宏函数占用了大量的空间,而函数占用了时间。大家要知道的是,函数调用是要使用系统的栈来保存数据的,如果编译器里有栈检查选项,一般在函数的头会嵌入一些汇编语句对当前栈进行检查;同时,CPU也要在函数调用时保存和恢复当前的现场,进行压栈和弹栈操作,所以,函数调用需要一些CPU时间。而宏函数不存在这个问题。宏函数仅仅作为预先写好的代码嵌入到当前程序,不会产生函数调用,所以仅仅是占用了空间,在频繁调用同一个宏函数的时候,该现象尤其突出。

    D方法是我看到的最好的置位操作函数,是 ARM 公司源码的一部分,在短短的三行内实现了很多功能,几乎涵盖了所有的位操作功能。C方法是其变体,其中滋味还需大家仔细体会。

    第 2 招:数学方法解决问题

    现在我们演绎高效C 语言编写的第二招--采用数学方法来解决问题。数学是计算机之母,没有数学的依据和基础,就没有计算机的发展,所以在编写程序的时候,采用一些数学方法会对程序的执行效率有数量级的提高。

    举例如下,求 1~100 的和。

    方法E

    int I,j;

    for (I=1; I<=100; I++){

    j+=I;

    }

    方法 F

    int I;

    I=(100*(1+100))/2

    这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 Nx(N+1)/2来解决这个问题。方法E 循环了 100次才解决问题,也就是说最少用了 100个赋值、100个判断、200个加法(I和 j);而方法F仅仅用了 1 个加法、1个乘法、1 次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。

    这个例子是我印象最深的一个数学用例,是我的计算机启蒙老师考我的。当时我只有小学三年级,可惜我当时不知道用公式 Nx(N+1)/2来解决这个问题。方法E 循环了 100次才解决问题,也就是说最少用了 100个赋值、100个判断、200个加法(I和 j);而方法F仅仅用了 1 个加法、1个乘法、1 次除法。效果自然不言而喻。所以,现在我在编程序的时候,更多的是动脑筋找规律,最大限度地发挥数学的威力来提高程序运行的效率。

    第 3 招:使用位操作

    实现高效的C 语言编写的第三招--使用位操作,减少除法和取模的运算。

    在计算机程序中,数据的位是可以操作的最小数据单位,理论上可以用“位运算”来完成所有的运算和操作。一般的位操作

    是用来控制硬件的,或者做数据变换使用,但是,灵活的位操作可以有效地提高程序运行的效率。举例台如下:

    方法 G

    int I,J;

    I=257/8;

    J=456%32;

    方法 H

    int I,J;

    I=257>>3;

    J=456-(456>>4<<4);

    在字面上好象 H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法 G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存器参与运算;而方法
    H则仅仅是几句相关的汇编,代码更简洁、效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C,ARM C来看,效率的差距还是不小。相关汇编代码就不在这里列举了。运用这招需要注意的是,因为 CPU 的不同而产生的问题。比如说,在 PC 上用这招编写的程序,并在 PC 上调试通过,在移植到一个 16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。

    在字面上好象 H比G麻烦了好多,但是,仔细查看产生的汇编代码就会明白,方法 G调用了基本的取模函数和除法函数,既有函数调用,还有很多汇编代码和寄存器参与运算;而方法
    H则仅仅是几句相关的汇编,代码更简洁、效率更高。当然,由于编译器的不同,可能效率的差距不大,但是,以我目前遇到的MS C,ARM C来看,效率的差距还是不小。相关汇编代码就不在这里列举了。运用这招需要注意的是,因为 CPU 的不同而产生的问题。比如说,在 PC 上用这招编写的程序,并在 PC 上调试通过,在移植到一个 16位机平台上的时候,可能会产生代码隐患。所以只有在一定技术进阶的基础下才可以使用这招。

    第 4 招:汇编嵌入

    高效C 语言编程的必杀技,第四招--嵌入汇编。

    “在熟悉汇编语言的人眼里,C语言编写的程序都是垃圾”。这种说法虽然偏激了一些,但是却有它的道理。汇编语言是效率最高的计算机语言,但是,不可能靠着它来写一个操作系统吧?所以,为了获得程序的高效率,我们只好采用变通的方法--嵌入汇编、混合编程。

    举例如下,将数组一赋值给数组二,要求每一个字节都相符。char string1[1024], string2[1024];

    方法 I

    int I;

    for (I=0; I<1024; I++)

    *(string2+I)=*(string1+I)

    方法 J
    #int I;
    for(I=0; I<1024; I++)
    *(string2+I)=*(string1+I);
    #else

    #ifdef_ARM_

    _asm

    {

    MOV R0,string1

    MOV R1,string2

    MOV R2,#0

    loop:

    LDMIA R0!,[R3-R11]

    STMIA R1!,[R3-R11]

    ADD R2,R2,#8

    CMP R2, #400

    BNE loop

    }

    #endif

    方法 I是最常见的方法,使用了 1024次循环;方法J则根据平台不同做了区分,在 ARM 平台下,用嵌入汇编仅用 128次循环就完成了同样的操作。这里有朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0 的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个例程典型应用于 LCD数据的拷贝过程根据不同的 CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。

    方法 I是最常见的方法,使用了 1024次循环;方法J则根据平台不同做了区分,在 ARM 平台下,用嵌入汇编仅用 128次循环就完成了同样的操作。这里有朋友会说,为什么不用标准的内存拷贝函数呢?这是因为在源数据里可能含有数据为0 的字节,这样的话,标准库函数会提前结束而不会完成我们要求的操作。这个例程典型应用于 LCD数据的拷贝过程根据不同的 CPU,熟练使用相应的嵌入汇编,可以大大提高程序执行的效率。

    虽然是必杀技,但是如果轻易使用会付出惨重的代价。这是因为,使用了嵌入汇编,便限制了程序的可移植性,使程序在不同平台移植的过程中,卧虎藏龙、险象环生!同时该招数也与现代软件工程的思想相违背,只有在迫不得已的情况下才可以采用,切记。

    使用C 语言进行高效率编程,我的体会仅此而已。在此已本文抛砖引玉,还请各位高手共同切磋。希望各位能给出更好的方法,大家一起提高我们的编程技巧。

  • 相关阅读:
    LeetCode 79. 单词搜索
    LeetCode 1143. 最长公共子序列
    LeetCode 55. 跳跃游戏
    LeetCode 48. 旋转图像
    LeetCode 93. 复原 IP 地址
    LeetCode 456. 132模式
    LeetCode 341. 扁平化嵌套列表迭代器
    LeetCode 73. 矩阵置零
    LeetCode 47. 全排列 II
    LeetCode 46. 全排列
  • 原文地址:https://www.cnblogs.com/hnrainll/p/1916709.html
Copyright © 2011-2022 走看看