zoukankan      html  css  js  c++  java
  • 朴素贝叶斯应用:垃圾邮件分类

    import nltk
    nltk.download()
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    
    #预处理
    def preprocessing(text):
        tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokrnize(sent)]
        stops = stopwords.words('english')  
        tokens = [token for token in tokens if token not in stops]   #去掉停用词
    
        tokens = [token.lower() for token in tokens if len(token)>=2]  #去掉长度小于2的词
        lmtzr  =  WordNetLemmatizer()
        tokens = (lmtzr.lemmatize(token) for token in tokens) #词性还原
        preprocessed_text = ' '.join(tokens)  
        return preprocessed_text
    
    #读取数据集
    import csv
    file_path = r'C:UsersAdministratorDesktopSMSSpamCollectionjsn.txt'
    sms = open(file_path,'r',encoding='utf-8')
    sms_data = []
    sms_label = []
    csv_reader = csv.reader(sms,delimiter = '	')
    for line in csv_reader:
        sms_label.append(line[0])
        sms_data.append(preprocessing(line[1]))
    sms.close()
    
    #训练集和测试集数据划分
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(sms_data,sms_label,test_size = 0.3,random_state=0,stratify=sms_label)
    
    #将其向量化
    from sklearn.feature_extraction.text import TfidfVectorizer
    vectorizer = TfidfVectorizer(min_df=2,ngram_range=(1,2),stop_words='english',strip_accents='unicode',norm='12')
    X_train = vectorizer.fit_transform(x_train)
    X_test = vectorizer.transform(x_test)
    
    #朴素贝叶斯分类器
    
    from sklearn.navie_bayes import MultinomiaNB
    clf = MultinomiaNB().fit(X_train,y_train)
    
    #测试模型
    y_nb_pred = clf.predict(X_test)
    
    #测试模型:结果显示
    from sklearn.metrics import confusion_matrix
    from sklearn.metrics import classification_report
    
    print(y_nb_pred.shape,y_nb_pred) #x_test预测结果
    print('nb_confusion_matrix:')
    cm = confusion_matrix(y_test,y_nb_pred)#混淆矩阵
    print(cm)
    print('nb_classification_report:')
    cr = classification_report(y_test,y_nb_pred) #主要分类指标的文本报告
    print(cr)
  • 相关阅读:
    剑指 Offer 30. 包含min函数的栈
    剑指 Offer 12. 矩阵中的路径
    剑指 Offer 11. 旋转数组的最小数字
    剑指 Offer 04. 二维数组中的查找
    LeetCode——139. 单词拆分
    LeetCode——(每日一题)恢复空格
    MySQL专职DBA博客目录-周万春
    MySQL专职DBA,微信群,技术群,交流群,开车群
    DBA生产经验总结
    创建MySQL账户
  • 原文地址:https://www.cnblogs.com/hodafu/p/10037332.html
Copyright © 2011-2022 走看看