zoukankan      html  css  js  c++  java
  • 7.逻辑回归实践

    1.逻辑回归是怎么防止过拟合的?为什么正则化可以防止过拟合?(大家用自己的话介绍下)

    1)减少数量特征或正则化

    2)正则化不需减少数量特征,只需要通过减小特征变量的数量级使他们接近于0.这样子就可以形成一个类似二元的多元函数。

    2.用logiftic回归来进行实践操作,数据不限。

    import pandas as pd
    import numpy as np
    from sklearn.linear_model import LogisticRegression
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import classification_report
    from sklearn.preprocessing import StandardScaler
    
    def logistic():
        data = pd.read_csv("./breast-cancer-wisconsin.csv")
        data = data.replace(to_replace='?', value=np.nan)
        data = data.dropna()
        x = data.iloc[:, 1:10]
        y = data.iloc[:, 10]
        x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)
        std = StandardScaler()
        x_train = std.fit_transform(x_train)
        x_test = std.fit_transform(x_test)
        lg = LogisticRegression()
        lg.fit(x_train, y_train)
        print(lg.coef_)
        print("准确率:", lg.score(x_test, y_test))
        print("召回率:", classification_report(y_test, lg.predict(x_test)))
    
    if __name__ == "__main__":
        logistic()

  • 相关阅读:
    近似计算π(for循环)
    apache部署mo_python
    文件注释方法
    算法效率的度量
    ssh
    使用类名创建对象
    筛选网址
    常用django命令
    查看和关闭端口
    update脚本出错
  • 原文地址:https://www.cnblogs.com/hoioh/p/12785741.html
Copyright © 2011-2022 走看看