zoukankan      html  css  js  c++  java
  • 12.垃圾邮件分类2

    1.读取

    #1.读取数据集
    def read_dataset():
        file_path = r'D:SMSSpamCollection.txt'
        sms = open(file_path, encoding='utf-8')
        sms_data = []
        sms_label = []
        csv_reader = csv.reader(sms, delimiter='	')
        for line in csv_reader:
            sms_label.append(line[0])  #提取出标签
            sms_data.append(preprocessing(line[1]))  #提取出特征
        sms.close()
        return sms_data, sms_label

    2.数据预处理

    #2、数据预处理
    def preprocess(text):
         tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  #分词
         stops = stopwords.words('english')  #使用英文的停用词表
         tokens = [token for token in tokens if token not in stops]  #去除停用词
         tokens = [token.lower() for token in tokens if len(token) >= 3]  #大小写,短词
         wnl = WordNetLemmatizer()
         tag = nltk.pos_tag(tokens)  #词性
         tokens = [wnl.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  #词性还原
         preprocessed_text = ' '.join(tokens)
         return preprocessed_text

    3.数据划分—训练集和测试集数据划分

    from sklearn.model_selection import train_test_split

    x_train,x_test, y_train, y_test = train_test_split(data, target, test_size=0.2, random_state=0, stratify=y_train)

    def split_dataset(data, label):
         x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
         return x_train, x_test, y_train, y_tes

    4.文本特征提取

    sklearn.feature_extraction.text.CountVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.CountVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer

    sklearn.feature_extraction.text.TfidfVectorizer

    https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html?highlight=sklearn%20feature_extraction%20text%20tfidfvectorizer#sklearn.feature_extraction.text.TfidfVectorizer

    from sklearn.feature_extraction.text import TfidfVectorizer

    tfidf2 = TfidfVectorizer()

    观察邮件与向量的关系

    向量还原为邮件

    #4.文本特征提取
    #把文本转化为tf-idf的特征矩阵
    def tfidf_dataset(x_train,x_test):
         tfidf = TfidfVectorizer()
         X_train = tfidf.fit_transform(x_train)  
         X_test = tfidf.transform(x_test)
         return X_train, X_test, tfidf
    #向量还原成邮件
    def revert_mail(x_train, X_train, model):
        s = X_train.toarray()[0]
        print("第一封邮件向量表示为:", s)
        a = np.flatnonzero(X_train.toarray()[0])  #非零元素的位置(index)
        print("非零元素的位置:", a)
        print("向量的非零元素的值:", s[a])
        b = model.vocabulary_  #词汇表
        key_list = []
        for key, value in b.items():
            if value in a:
                key_list.append(key)  #key非0元素对应的单词
        print("向量非零元素对应的单词:", key_list)
        print("向量化之前的邮件:", x_train[0])

    5.模型选择

    from sklearn.naive_bayes import GaussianNB

    from sklearn.naive_bayes import MultinomialNB

    说明为什么选择这个模型?

    答:不符合正态分布

    #5.模型选择
    def mnb_model(x_train, x_test, y_train, y_test):
        mnb = MultinomialNB()
        mnb.fit(x_train, y_train)
        pre = mnb.predict(x_test)
        print("总数:", len(y_test))
        print("预测正确数:", (pre == y_test).sum())
        print("预测准确率:",sum(pre == y_test) / len(y_test))
        return pre

    6.模型评价:混淆矩阵,分类报告

    from sklearn.metrics import confusion_matrix

    confusion_matrix = confusion_matrix(y_test, y_predict)

    说明混淆矩阵的含义

    from sklearn.metrics import classification_report

    说明准确率、精确率、召回率、F值分别代表的意义 

    答:①混淆矩阵 confusion-matrix:

    TP(True Positive):真实为0,预测为0

    TN(True Negative):真实为1,预测为1

    FN(False Negative):真实为0,预测为1 

    FP(False Positive):真实为1,预测为0

    ②准确率 accuracy:代表分类器对整个样本判断正确的比重。

    ③精确率 precision:指被分类器判断正例中的正样本的比重。

    ④召回率 recall:指被预测为正例的占总的正例的比重。

    ⑤F值:准确率和召回率的加权调和平均。

    #6.模型评价:混淆矩阵,分类报告
    def class_report(ypre_mnb, y_test):
        conf_matrix = confusion_matrix(y_test, ypre_mnb)
        print("=====================================================")
        print("混淆矩阵:
    ", conf_matrix)
        c = classification_report(y_test, ypre_mnb)
        print("=====================================================")
        print("分类报告:
    ", c)
        print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))

    完整代码如下:

    from sklearn.model_selection import train_test_split
    from sklearn.feature_extraction.text import TfidfVectorizer
    from sklearn.naive_bayes import MultinomialNB
    from sklearn.metrics import confusion_matrix, classification_report
    import numpy as np
    import nltk
    from nltk.corpus import stopwords
    from nltk.stem import WordNetLemmatizer
    import csv
    #根据词性,生成还原参数pos
    def get_wordnet_pos(treebank_tag):
        if treebank_tag.startswith('J'):  #形容词
            return nltk.corpus.wordnet.ADJ
        elif treebank_tag.startswith('V'):  #动词
            return nltk.corpus.wordnet.VERB
        elif treebank_tag.startswith('N'):  #名词
            return nltk.corpus.wordnet.NOUN
        elif treebank_tag.startswith('R'):  #副词
            return nltk.corpus.wordnet.ADV
        else:
            return nltk.corpus.wordnet.NOUN
    #数据预处理
    def preprocessing(text):
        tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)]  #分词
        stops = stopwords.words('english')  #使用英文的停用词表
        tokens = [token for token in tokens if token not in stops]  #停用词
        tokens = [token.lower() for token in tokens if len(token) >= 3]  #大小写、长度<3
    
        tag = nltk.pos_tag(tokens)  #词性
        lmtzr = WordNetLemmatizer()
        tokens = [lmtzr.lemmatize(token, pos=get_wordnet_pos(tag[i][1])) for i, token in enumerate(tokens)]  #词性还原
        preprocessed_text = ' '.join(tokens)
        return preprocessed_text
    #读取数据
    def read_dataset():
        # 打开csv文件
        sms = open('./SMSSpamCollection', 'r', encoding='utf-8')
        sms_label = []  #标题
        sms_data = []  #数据
        #读取csv数据
        csv_reader = csv.reader(sms, delimiter='	')
        for line in csv_reader:
            sms_label.append(line[0])  #提取出标签
            sms_data.append(preprocessing(line[1]))  #对每封邮件做预处理
        sms.close()
        return sms_data, sms_label
    #划分数据集
    def split_dataset(data, label):
        x_train, x_test, y_train, y_test = train_test_split(data, label, test_size=0.2, random_state=0, stratify=label)
        return x_train, x_test, y_train, y_test
    #把原始文本转化为tf-idf的特征矩阵
    def tfidf_dataset(x_train, x_test):
        tfidf = TfidfVectorizer()
        X_train = tfidf.fit_transform(x_train)  #X_train用fit_transform生成词汇表
        X_test = tfidf.transform(x_test)  #X_test要与X_train词汇表相同,因此在X_train进行fit_transform基础上进行transform操作
        return X_train, X_test, tfidf
    #向量还原邮件
    def revert_mail(x_train, X_train, model):
        s = X_train.toarray()[0]
        print("第一封邮件向量表示为:", s)
        #该函数输入一个矩阵,返回扁平化后矩阵中非零元素的位置(index)
        a = np.flatnonzero(X_train.toarray()[0])  #非零元素的位置(index)
        print("非零元素的位置:", a)
        print("向量的非零元素的值:", s[a])
        b = model.vocabulary_  #词汇表
        key_list = []
        for key, value in b.items():
            if value in a:
                key_list.append(key)  #key非0元素对应的单词
        print("向量非零元素对应的单词:", key_list)
        print("向量化之前的邮件:", x_train[0])
    #模型选择(根据数据特点选择多项式分布)
    def mnb_model(x_train, x_test, y_train, y_test):
        mnb = MultinomialNB()
        mnb.fit(x_train, y_train)
        ypre_mnb = mnb.predict(x_test)
        print("总数:", len(y_test))
        print("预测正确数:", (ypre_mnb == y_test).sum())
        return ypre_mnb
    #模型评价:混淆矩阵,分类报告
    def class_report(ypre_mnb, y_test):
        conf_matrix = confusion_matrix(y_test, ypre_mnb)
        print("**********************************************************")
        print("混淆矩阵:
    ", conf_matrix)
        c = classification_report(y_test, ypre_mnb)
        print("**********************************************************")
        print("分类报告:
    ", c)
        print("**********************************************************")
        print("模型准确率:", (conf_matrix[0][0] + conf_matrix[1][1]) / np.sum(conf_matrix))
    
    
    if __name__ == '__main__':
        sms_data, sms_label = read_dataset()  #读取数据集
        x_train, x_test, y_train, y_test = split_dataset(sms_data, sms_label)  #划分数据集
        X_train, X_test, tfidf = tfidf_dataset(x_train, x_test)  #把原始文本转化为tf-idf的特征矩阵
        revert_mail(x_train, X_train, tfidf)  #向量还原成邮件
        y_mnb = mnb_model(X_train, X_test, y_train, y_test)  #模型选择
        class_report(y_mnb, y_test)  #模型评价

    7.比较与总结

    如果用CountVectorizer进行文本特征生成,与TfidfVectorizer相比,效果如何?

     答:CountVectorizer与TfidfVectorizer相比,对于负类的预测更加准确,而正类的预测则稍逊色。但总体预测正确率也比TfidfVectorizer稍高,相比之下似乎CountVectorizer更适合进行预测。总的来看,用CountVectorizer虽在总样本中表现看似优秀,但其实际对样本个体预测的误差要高于使用TfidfVectorizer。因为TfidfVectorizer能够过滤掉一些常见的却无关紧要本的词语,同时保留影响整个文本的重要字词,更适用于垃圾邮件分类。

  • 相关阅读:
    Tomcat6 一些调优设置内存和连接数
    【原创】使用c3p0数据库连接池时出现com.mchange.v2.resourcepool.TimeoutException
    JVM内存的设置
    JBOSS以及tomcat最大连接数配置和jvm内存配置
    摘抄python __init__
    Python中__init__方法介绍
    Python 绝对简明手册
    python中eval, exec, execfile,和compile [转载]
    extern、static、auto、register 定义变量的不同用法
    Python 网络编程说明
  • 原文地址:https://www.cnblogs.com/hoioh/p/12972161.html
Copyright © 2011-2022 走看看