Untitled
Problem Description
There is an integer a and n integers b1,…,bn. After selecting some numbers from b1,…,bn in any order, say c1,…,cr, we want to make sure that a mod c1 mod c2 mod… mod cr=0 (i.e., a will become the remainder divided by ci each time, and at the end, we want a to become 0). Please determine the minimum value of r. If the goal cannot be achieved, print −1 instead.
Input
The first line contains one integer T≤5, which represents the number of testcases.
For each testcase, there are two lines:
1. The first line contains two integers n and a (1≤n≤20,1≤a≤106).
2. The second line contains n integers b1,…,bn (∀1≤i≤n,1≤bi≤106).
Output
Print T answers in T lines.
Sample Input
2
2 9
2 7
2 9
6 7
Sample Output
2
-1
1 #include<cstdio> 2 #include<algorithm> 3 using namespace std; 4 5 int ans,m,n; 6 int b[21]; 7 8 bool cmp(int a,int b) 9 { 10 return a>b; 11 } 12 13 void dfs(int total,int cur,int num) 14 { 15 if(total==0) 16 { 17 ans=min(ans,num); 18 return; 19 } 20 if(cur==m) 21 return; 22 dfs(total%b[cur],cur+1,num+1); 23 dfs(total,cur+1,num); 24 } 25 26 int main() 27 { 28 //freopen("in.txt","r",stdin); 29 int i,t; 30 scanf("%d",&t); 31 while(t--) 32 { 33 ans=21; 34 scanf("%d%d",&m,&n); 35 for(i=0;i<m;i++) 36 scanf("%d",&b[i]); 37 sort(b,b+m,cmp); 38 dfs(n,0,0); 39 if(ans==21) 40 printf("-1 "); 41 else 42 printf("%d ",ans); 43 } 44 return 0; 45 }