zoukankan      html  css  js  c++  java
  • Codeforces 543A Writing Code

    A. Writing Code

     

    Programmers working on a large project have just received a task to write exactly m lines of code. There are n programmers working on a project, the i-th of them makes exactly ai bugs in every line of code that he writes.

    Let's call a sequence of non-negative integers v1, v2, ..., vn a plan, if v1 + v2 + ... + vn = m. The programmers follow the plan like that: in the beginning the first programmer writes the first v1 lines of the given task, then the second programmer writes v2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let's call a plan good, if all the written lines of the task contain at most b bugs in total.

    Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer mod.

    Input

    The first line contains four integers nmbmod (1 ≤ n, m ≤ 500, 0 ≤ b ≤ 500; 1 ≤ mod ≤ 109 + 7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.

    The next line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 500) — the number of bugs per line for each programmer.

    Output

    Print a single integer — the answer to the problem modulo mod.

    Sample test(s)
    input
    3 3 3 100
    1 1 1
    output
    10
    input
    3 6 5 1000000007
    1 2 3
    output
    0
    input
    3 5 6 11
    1 2 1
    output
    0

     1 #include<cstdio>
     2 #include<cstring>
     3 using namespace std;
     4 
     5 int main()
     6 {
     7     int i,j,k;
     8     int p[505];
     9     int n,m,b,mod;
    10     long long dp[505][505];
    11     while(scanf("%d%d%d%d",&n,&m,&b,&mod)!=EOF)
    12     {
    13         memset(dp,0,sizeof(dp));
    14         for(i=0;i<n;i++)
    15             scanf("%d",&p[i]);
    16         dp[0][0]=1;
    17         for(i=0;i<n;i++)
    18             for(j=1;j<=m;j++)
    19                 for(k=p[i];k<=b;k++)
    20                 {
    21                     dp[j][k]+=dp[j-1][k-p[i]];
    22                     dp[j][k]%=mod;
    23                 }
    24         int ans=0;
    25         for(i=0;i<=b;i++)
    26         {
    27             ans+=dp[m][i];
    28             ans%=mod;
    29         }
    30         printf("%d
    ",ans);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    Mongodb 集群加keyFile认证
    MongoDB 3.0 常见集群的搭建(主从复制,副本集,分片....)
    JVM的垃圾回收机制详解和调优
    深入Java核心 Java内存分配原理精讲
    PLSQL Developer win7 64位 安装方法
    nginx作为负载均衡服务器——测试
    Nginx负载均衡配置
    nginx集群报错“upstream”directive is not allow here 错误
    Nginx反向代理和负载均衡——个人配置
    Quartz集群配置
  • 原文地址:https://www.cnblogs.com/homura/p/4795701.html
Copyright © 2011-2022 走看看