zoukankan      html  css  js  c++  java
  • Codeforces 543A Writing Code

    A. Writing Code

     

    Programmers working on a large project have just received a task to write exactly m lines of code. There are n programmers working on a project, the i-th of them makes exactly ai bugs in every line of code that he writes.

    Let's call a sequence of non-negative integers v1, v2, ..., vn a plan, if v1 + v2 + ... + vn = m. The programmers follow the plan like that: in the beginning the first programmer writes the first v1 lines of the given task, then the second programmer writes v2 more lines of the given task, and so on. In the end, the last programmer writes the remaining lines of the code. Let's call a plan good, if all the written lines of the task contain at most b bugs in total.

    Your task is to determine how many distinct good plans are there. As the number of plans can be large, print the remainder of this number modulo given positive integer mod.

    Input

    The first line contains four integers nmbmod (1 ≤ n, m ≤ 500, 0 ≤ b ≤ 500; 1 ≤ mod ≤ 109 + 7) — the number of programmers, the number of lines of code in the task, the maximum total number of bugs respectively and the modulo you should use when printing the answer.

    The next line contains n space-separated integers a1, a2, ..., an (0 ≤ ai ≤ 500) — the number of bugs per line for each programmer.

    Output

    Print a single integer — the answer to the problem modulo mod.

    Sample test(s)
    input
    3 3 3 100
    1 1 1
    output
    10
    input
    3 6 5 1000000007
    1 2 3
    output
    0
    input
    3 5 6 11
    1 2 1
    output
    0

     1 #include<cstdio>
     2 #include<cstring>
     3 using namespace std;
     4 
     5 int main()
     6 {
     7     int i,j,k;
     8     int p[505];
     9     int n,m,b,mod;
    10     long long dp[505][505];
    11     while(scanf("%d%d%d%d",&n,&m,&b,&mod)!=EOF)
    12     {
    13         memset(dp,0,sizeof(dp));
    14         for(i=0;i<n;i++)
    15             scanf("%d",&p[i]);
    16         dp[0][0]=1;
    17         for(i=0;i<n;i++)
    18             for(j=1;j<=m;j++)
    19                 for(k=p[i];k<=b;k++)
    20                 {
    21                     dp[j][k]+=dp[j-1][k-p[i]];
    22                     dp[j][k]%=mod;
    23                 }
    24         int ans=0;
    25         for(i=0;i<=b;i++)
    26         {
    27             ans+=dp[m][i];
    28             ans%=mod;
    29         }
    30         printf("%d
    ",ans);
    31     }
    32     return 0;
    33 }
  • 相关阅读:
    mysqldump全量和增量备份脚本
    mysqldump根据通配符批量导出
    xtrabackup2.4_MySQL5.7备份与恢复
    ArrayInt
    Oracle wallet配置登陆凭证
    percona xtrabackup8.0.4备份恢复mysql8.0.12
    mysql修改密码
    range
    一周感悟
    Target
  • 原文地址:https://www.cnblogs.com/homura/p/4795701.html
Copyright © 2011-2022 走看看