zoukankan      html  css  js  c++  java
  • HDU 3836 Equivalent Sets(强连通缩点)

    Equivalent Sets



    Problem Description
    To prove two sets A and B are equivalent, we can first prove A is a subset of B, and then prove B is a subset of A, so finally we got that these two sets are equivalent.
    You are to prove N sets are equivalent, using the method above: in each step you can prove a set X is a subset of another set Y, and there are also some sets that are already proven to be subsets of some other sets.
    Now you want to know the minimum steps needed to get the problem proved.
     
    Input
    The input file contains multiple test cases, in each case, the first line contains two integers N <= 20000 and M <= 50000.
    Next M lines, each line contains two integers X, Y, means set X in a subset of set Y.
     
    Output
    For each case, output a single integer: the minimum steps needed.
     
    Sample Input
    4 0
    3 2
    1 2
    1 3
     
     
    Sample Output
    4
    2
    Hint
    Case 2: First prove set 2 is a subset of set 1 and then prove set 3 is a subset of set 1.
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<stack>
     5 #include<vector>
     6 using namespace std;
     7 
     8 const int maxn=20005;
     9 vector<int>G[maxn];
    10 stack<int>s;
    11 int in[maxn],out[maxn],dfn[maxn],lowlink[maxn],sccno[maxn];
    12 int scc_cnt,dfs_clock;
    13 int m,n;
    14 
    15 void init()
    16 {
    17     for(int i=1;i<=n;i++)G[i].clear();
    18     memset(in,0,sizeof(in));
    19     memset(out,0,sizeof(out));
    20     memset(dfn,0,sizeof(dfn));
    21     memset(lowlink,0,sizeof(lowlink));
    22     memset(sccno,0,sizeof(sccno));
    23     scc_cnt=dfs_clock=0;
    24 }
    25 
    26 void tarjan(int u)
    27 {
    28     lowlink[u]=dfn[u]=++dfs_clock;
    29     s.push(u);
    30     for(int i=0;i<G[u].size();i++)
    31     {
    32         int v=G[u][i];
    33         if(!dfn[v])
    34         {
    35             tarjan(v);
    36             lowlink[u]=min(lowlink[u],lowlink[v]);
    37         }
    38         else if(!sccno[v])
    39             lowlink[u]=min(lowlink[u],dfn[v]);
    40     }
    41     if(lowlink[u]==dfn[u])
    42     {
    43         scc_cnt++;
    44         while(1)
    45         {
    46             int x=s.top();
    47             s.pop();
    48             sccno[x]=scc_cnt;
    49             if(x==u)break;
    50         }
    51     }
    52 }
    53 
    54 
    55 
    56 int main()
    57 {
    58     while(scanf("%d%d",&n,&m)!=EOF)
    59     {
    60         init();
    61         for(int i=0;i<m;i++)
    62         {
    63             int u,v;
    64             scanf("%d%d",&u,&v);
    65             G[u].push_back(v);
    66         }
    67         for(int i=1;i<=n;i++)
    68             if(!dfn[i])
    69                 tarjan(i);
    70         for(int i=1;i<=n;i++)
    71             for(int j=0;j<G[i].size();j++)
    72                 if(sccno[G[i][j]]!=sccno[i])
    73                 {
    74                     in[sccno[G[i][j]]]++;
    75                     out[sccno[i]]++;
    76                 }
    77         int cnt1=0,cnt2=0;
    78         for(int i=1;i<=scc_cnt;i++)
    79         {
    80             if(!in[i])
    81                 cnt1++;
    82             if(!out[i])
    83                 cnt2++;
    84         }
    85         if(scc_cnt==1)
    86             puts("0");
    87         else
    88             printf("%d
    ",max(cnt1,cnt2));
    89     }
    90     return 0;
    91 }
  • 相关阅读:
    数组的复制
    二维数组的切片和索引
    一维数组的切片和索引
    is判断函数
    其他方式创建数组
    ndarray对象属性
    创建随机数组
    arange创建数组
    SmartBinding与kbmMW#3
    SmartBinding与kbmMW#2
  • 原文地址:https://www.cnblogs.com/homura/p/4864783.html
Copyright © 2011-2022 走看看