zoukankan      html  css  js  c++  java
  • HDU 2767 Proving Equivalences(强连通缩点)

    Proving Equivalences



    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2
    4 0
    3 2
    1 2
    1 3
     
     
    Sample Output
    4
    2
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<stack>
     5 #include<vector>
     6 using namespace std;
     7 
     8 const int maxn=20005;
     9 vector<int>G[maxn];
    10 stack<int>s;
    11 int in[maxn],out[maxn],dfn[maxn],lowlink[maxn],sccno[maxn];
    12 int scc_cnt,dfs_clock;
    13 int m,n;
    14 
    15 void init()
    16 {
    17     for(int i=1;i<=n;i++)G[i].clear();
    18     memset(in,0,sizeof(in));
    19     memset(out,0,sizeof(out));
    20     memset(dfn,0,sizeof(dfn));
    21     memset(lowlink,0,sizeof(lowlink));
    22     memset(sccno,0,sizeof(sccno));
    23     scc_cnt=dfs_clock=0;
    24 }
    25 
    26 void tarjan(int u)
    27 {
    28     lowlink[u]=dfn[u]=++dfs_clock;
    29     s.push(u);
    30     for(int i=0;i<G[u].size();i++)
    31     {
    32         int v=G[u][i];
    33         if(!dfn[v])
    34         {
    35             tarjan(v);
    36             lowlink[u]=min(lowlink[u],lowlink[v]);
    37         }
    38         else if(!sccno[v])
    39             lowlink[u]=min(lowlink[u],dfn[v]);
    40     }
    41     if(lowlink[u]==dfn[u])
    42     {
    43         scc_cnt++;
    44         while(1)
    45         {
    46             int x=s.top();
    47             s.pop();
    48             sccno[x]=scc_cnt;
    49             if(x==u)break;
    50         }
    51     }
    52 }
    53 
    54 int main()
    55 {
    56     int T;
    57     scanf("%d",&T);
    58     while(T--)
    59     {
    60         scanf("%d%d",&n,&m);
    61         init();
    62         for(int i=0;i<m;i++)
    63         {
    64             int u,v;
    65             scanf("%d%d",&u,&v);
    66             G[u].push_back(v);
    67         }
    68         for(int i=1;i<=n;i++)
    69             if(!dfn[i])
    70                 tarjan(i);
    71         for(int i=1;i<=n;i++)
    72             for(int j=0;j<G[i].size();j++)
    73                 if(sccno[G[i][j]]!=sccno[i])
    74                 {
    75                     in[sccno[G[i][j]]]++;
    76                     out[sccno[i]]++;
    77                 }
    78         int cnt1=0,cnt2=0;
    79         for(int i=1;i<=scc_cnt;i++)
    80         {
    81             if(!in[i])
    82                 cnt1++;
    83             if(!out[i])
    84                 cnt2++;
    85         }
    86         if(scc_cnt==1)
    87             puts("0");
    88         else
    89             printf("%d
    ",max(cnt1,cnt2));
    90     }
    91     return 0;
    92 }
  • 相关阅读:
    Datax streamreader json测试样例
    dbeaver 连接 elasticsearch 记录
    灾害链开发记录资料汇总
    mxgraph
    drawio www.diagrams.net 画图应用程序开发过程资料汇总
    neo4j学习记录
    GraphVis 图可视化分析组件
    D3学习记录
    Kubernetes K8S之固定节点nodeName和nodeSelector调度详解
    记一次性能优化,单台4核8G机器支撑5万QPS
  • 原文地址:https://www.cnblogs.com/homura/p/4864864.html
Copyright © 2011-2022 走看看