zoukankan      html  css  js  c++  java
  • HDU 2767 Proving Equivalences(强连通缩点)

    Proving Equivalences



    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2
    4 0
    3 2
    1 2
    1 3
     
     
    Sample Output
    4
    2
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<stack>
     5 #include<vector>
     6 using namespace std;
     7 
     8 const int maxn=20005;
     9 vector<int>G[maxn];
    10 stack<int>s;
    11 int in[maxn],out[maxn],dfn[maxn],lowlink[maxn],sccno[maxn];
    12 int scc_cnt,dfs_clock;
    13 int m,n;
    14 
    15 void init()
    16 {
    17     for(int i=1;i<=n;i++)G[i].clear();
    18     memset(in,0,sizeof(in));
    19     memset(out,0,sizeof(out));
    20     memset(dfn,0,sizeof(dfn));
    21     memset(lowlink,0,sizeof(lowlink));
    22     memset(sccno,0,sizeof(sccno));
    23     scc_cnt=dfs_clock=0;
    24 }
    25 
    26 void tarjan(int u)
    27 {
    28     lowlink[u]=dfn[u]=++dfs_clock;
    29     s.push(u);
    30     for(int i=0;i<G[u].size();i++)
    31     {
    32         int v=G[u][i];
    33         if(!dfn[v])
    34         {
    35             tarjan(v);
    36             lowlink[u]=min(lowlink[u],lowlink[v]);
    37         }
    38         else if(!sccno[v])
    39             lowlink[u]=min(lowlink[u],dfn[v]);
    40     }
    41     if(lowlink[u]==dfn[u])
    42     {
    43         scc_cnt++;
    44         while(1)
    45         {
    46             int x=s.top();
    47             s.pop();
    48             sccno[x]=scc_cnt;
    49             if(x==u)break;
    50         }
    51     }
    52 }
    53 
    54 int main()
    55 {
    56     int T;
    57     scanf("%d",&T);
    58     while(T--)
    59     {
    60         scanf("%d%d",&n,&m);
    61         init();
    62         for(int i=0;i<m;i++)
    63         {
    64             int u,v;
    65             scanf("%d%d",&u,&v);
    66             G[u].push_back(v);
    67         }
    68         for(int i=1;i<=n;i++)
    69             if(!dfn[i])
    70                 tarjan(i);
    71         for(int i=1;i<=n;i++)
    72             for(int j=0;j<G[i].size();j++)
    73                 if(sccno[G[i][j]]!=sccno[i])
    74                 {
    75                     in[sccno[G[i][j]]]++;
    76                     out[sccno[i]]++;
    77                 }
    78         int cnt1=0,cnt2=0;
    79         for(int i=1;i<=scc_cnt;i++)
    80         {
    81             if(!in[i])
    82                 cnt1++;
    83             if(!out[i])
    84                 cnt2++;
    85         }
    86         if(scc_cnt==1)
    87             puts("0");
    88         else
    89             printf("%d
    ",max(cnt1,cnt2));
    90     }
    91     return 0;
    92 }
  • 相关阅读:
    spring boot 启动后执行初始化方法
    Linux CentOS 7 下 JDK 安装与配置
    Linux rpm 命令参数使用详解[介绍和应用]
    异常处理: 重载Throwable.fillInStackTrace方法已提高Java性能
    dubbo 配置属性
    centos7 操作防火墙
    springBoot 打包 dubbo jar包
    直播中聊天场景的用例分享
    解决在安装Fiddler4.6版本后,在手机上安装证书出现的问题解决方法
    系统调优方案思路分享
  • 原文地址:https://www.cnblogs.com/homura/p/4864864.html
Copyright © 2011-2022 走看看