zoukankan      html  css  js  c++  java
  • HDU 2767 Proving Equivalences(强连通缩点)

    Proving Equivalences



    Problem Description
    Consider the following exercise, found in a generic linear algebra textbook.

    Let A be an n × n matrix. Prove that the following statements are equivalent:

    1. A is invertible.
    2. Ax = b has exactly one solution for every n × 1 matrix b.
    3. Ax = b is consistent for every n × 1 matrix b.
    4. Ax = 0 has only the trivial solution x = 0. 

    The typical way to solve such an exercise is to show a series of implications. For instance, one can proceed by showing that (a) implies (b), that (b) implies (c), that (c) implies (d), and finally that (d) implies (a). These four implications show that the four statements are equivalent.

    Another way would be to show that (a) is equivalent to (b) (by proving that (a) implies (b) and that (b) implies (a)), that (b) is equivalent to (c), and that (c) is equivalent to (d). However, this way requires proving six implications, which is clearly a lot more work than just proving four implications!

    I have been given some similar tasks, and have already started proving some implications. Now I wonder, how many more implications do I have to prove? Can you help me determine this?
     
    Input
    On the first line one positive number: the number of testcases, at most 100. After that per testcase:

    * One line containing two integers n (1 ≤ n ≤ 20000) and m (0 ≤ m ≤ 50000): the number of statements and the number of implications that have already been proved.
    * m lines with two integers s1 and s2 (1 ≤ s1, s2 ≤ n and s1 ≠ s2) each, indicating that it has been proved that statement s1 implies statement s2.
     
    Output
    Per testcase:

    * One line with the minimum number of additional implications that need to be proved in order to prove that all statements are equivalent.
     
    Sample Input
    2
    4 0
    3 2
    1 2
    1 3
     
     
    Sample Output
    4
    2
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<stack>
     5 #include<vector>
     6 using namespace std;
     7 
     8 const int maxn=20005;
     9 vector<int>G[maxn];
    10 stack<int>s;
    11 int in[maxn],out[maxn],dfn[maxn],lowlink[maxn],sccno[maxn];
    12 int scc_cnt,dfs_clock;
    13 int m,n;
    14 
    15 void init()
    16 {
    17     for(int i=1;i<=n;i++)G[i].clear();
    18     memset(in,0,sizeof(in));
    19     memset(out,0,sizeof(out));
    20     memset(dfn,0,sizeof(dfn));
    21     memset(lowlink,0,sizeof(lowlink));
    22     memset(sccno,0,sizeof(sccno));
    23     scc_cnt=dfs_clock=0;
    24 }
    25 
    26 void tarjan(int u)
    27 {
    28     lowlink[u]=dfn[u]=++dfs_clock;
    29     s.push(u);
    30     for(int i=0;i<G[u].size();i++)
    31     {
    32         int v=G[u][i];
    33         if(!dfn[v])
    34         {
    35             tarjan(v);
    36             lowlink[u]=min(lowlink[u],lowlink[v]);
    37         }
    38         else if(!sccno[v])
    39             lowlink[u]=min(lowlink[u],dfn[v]);
    40     }
    41     if(lowlink[u]==dfn[u])
    42     {
    43         scc_cnt++;
    44         while(1)
    45         {
    46             int x=s.top();
    47             s.pop();
    48             sccno[x]=scc_cnt;
    49             if(x==u)break;
    50         }
    51     }
    52 }
    53 
    54 int main()
    55 {
    56     int T;
    57     scanf("%d",&T);
    58     while(T--)
    59     {
    60         scanf("%d%d",&n,&m);
    61         init();
    62         for(int i=0;i<m;i++)
    63         {
    64             int u,v;
    65             scanf("%d%d",&u,&v);
    66             G[u].push_back(v);
    67         }
    68         for(int i=1;i<=n;i++)
    69             if(!dfn[i])
    70                 tarjan(i);
    71         for(int i=1;i<=n;i++)
    72             for(int j=0;j<G[i].size();j++)
    73                 if(sccno[G[i][j]]!=sccno[i])
    74                 {
    75                     in[sccno[G[i][j]]]++;
    76                     out[sccno[i]]++;
    77                 }
    78         int cnt1=0,cnt2=0;
    79         for(int i=1;i<=scc_cnt;i++)
    80         {
    81             if(!in[i])
    82                 cnt1++;
    83             if(!out[i])
    84                 cnt2++;
    85         }
    86         if(scc_cnt==1)
    87             puts("0");
    88         else
    89             printf("%d
    ",max(cnt1,cnt2));
    90     }
    91     return 0;
    92 }
  • 相关阅读:
    .net开发微信(1)——微信订阅号的配置
    工作中EF遇到的问题
    .net Entity Framework初识1
    Razor视图
    jquery中利用队列依次执行动画
    .net找List1和List2的差集
    angularjs ng-if 中的ng-model 值作用域问题
    Spring Boot + JPA(hibernate 5) 开发时,数据库表名大小写问题
    springboot 启动排除某些bean 的注入
    angularjs 初始化方法执行两次以及url定义错误导致传值错误问题
  • 原文地址:https://www.cnblogs.com/homura/p/4864864.html
Copyright © 2011-2022 走看看