zoukankan      html  css  js  c++  java
  • HDU 3549 Flow Problem(最大流)

    Flow Problem



    Problem Description
    Network flow is a well-known difficult problem for ACMers. Given a graph, your task is to find out the maximum flow for the weighted directed graph.
     
    Input
    The first line of input contains an integer T, denoting the number of test cases.
    For each test case, the first line contains two integers N and M, denoting the number of vertexes and edges in the graph. (2 <= N <= 15, 0 <= M <= 1000)
    Next M lines, each line contains three integers X, Y and C, there is an edge from X to Y and the capacity of it is C. (1 <= X, Y <= N, 1 <= C <= 1000)
     
    Output
    For each test cases, you should output the maximum flow from source 1 to sink N.
     
    Sample Input
    2
    3 2
    1 2 1
    2 3 1
    3 3
    1 2 1
    2 3 1
    1 3 1
     
     
    Sample Output
    Case 1: 1
    Case 2: 2
     
     1 #include<cstdio>
     2 #include<cstring>
     3 #include<algorithm>
     4 #include<queue>
     5 #include<vector>
     6 using namespace std;
     7 
     8 struct Edge
     9 {
    10     int from,to,cap,flow;
    11 };
    12 
    13 const int inf=0x3f3f3f;
    14 vector<Edge>edges;
    15 vector<int>G[16];
    16 int a[16],p[16];
    17 int m,n;
    18 
    19 void init()
    20 {
    21     for(int i=1;i<=n;i++)G[i].clear();
    22     edges.clear();
    23     memset(p,0,sizeof(p));
    24 }
    25 
    26 void addedge(int from,int to,int cap)
    27 {
    28     edges.push_back((Edge){from,to,cap,0});
    29     edges.push_back((Edge){to,from,0,0});
    30     int m=edges.size();
    31     G[from].push_back(m-2);
    32     G[to].push_back(m-1);
    33 }
    34 
    35 int maxflow(int s,int t)
    36 {
    37     int flow=0;
    38     while(1)
    39     {
    40         memset(a,0,sizeof(a));
    41         queue<int>q;
    42         q.push(s);
    43         a[s]=inf;
    44         while(!q.empty())
    45         {
    46             int x=q.front();
    47             q.pop();
    48             for(int i=0;i<G[x].size();i++)
    49             {
    50                 Edge& e=edges[G[x][i]];
    51                 if(!a[e.to]&&e.cap>e.flow)
    52                 {
    53                     p[e.to]=G[x][i];
    54                     a[e.to]=min(a[x],e.cap-e.flow);
    55                     q.push(e.to);
    56                 }
    57             }
    58             if(a[t])break;
    59         }
    60         if(!a[t])break;
    61         for(int u=t;u!=s;u=edges[p[u]].from)
    62         {
    63             edges[p[u]].flow+=a[t];
    64             edges[p[u]^1].flow-=a[t];
    65         }
    66         flow+=a[t];
    67     }
    68     return flow;
    69 }
    70 
    71 int main()
    72 {
    73     int T;
    74     scanf("%d",&T);
    75     for(int t=1;t<=T;t++)
    76     {
    77         init();
    78         printf("Case %d: ",t);
    79         scanf("%d%d",&n,&m);
    80         for(int i=0;i<m;i++)
    81         {
    82             int u,v,w;
    83             scanf("%d%d%d",&u,&v,&w);
    84             addedge(u,v,w);
    85         }
    86         int ans=maxflow(1,n);
    87         printf("%d
    ",ans);
    88     }
    89     return 0;
    90 }
  • 相关阅读:
    Lambda表达式详解 (转)
    usb驱动开发21之驱动生命线
    usb驱动开发18之设备生命线
    usb驱动开发17之设备生命线
    usb驱动开发16之设备生命线
    usb驱动开发15之设备生命线
    usb驱动开发14之设备生命线
    usb驱动开发13之设备生命线
    usb驱动开发12之设备生命线
    usb驱动开发11之设备生命线
  • 原文地址:https://www.cnblogs.com/homura/p/4868263.html
Copyright © 2011-2022 走看看