zoukankan      html  css  js  c++  java
  • codeforces Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) B Guess the Permutation

    B. Guess the Permutation

    Bob has a permutation of integers from 1 to n. Denote this permutation as p. The i-th element of p will be denoted as pi. For all pairs of distinct integers i, j between 1 and n, he wrote the number ai, j = min(pi, pj). He writes ai, i = 0 for all integer i from 1 to n.

    Bob gave you all the values of ai, j that he wrote down. Your job is to reconstruct any permutation that could have generated these values. The input will be formed so that it is guaranteed that there is at least one solution that is consistent with the information given.

    Input

    The first line of the input will contain a single integer n (2 ≤ n ≤ 50).

    The next n lines will contain the values of ai, j. The j-th number on the i-th line will represent ai, j. The i-th number on the i-th line will be0. It's guaranteed that ai, j = aj, i and there is at least one solution consistent with the information given.

    Output

    Print n space separated integers, which represents a permutation that could have generated these values. If there are multiple possible solutions, print any of them.

    Sample test(s)
    input
    2
    0 1
    1 0
    output
    2 1
    input
    5
    0 2 2 1 2
    2 0 4 1 3
    2 4 0 1 3
    1 1 1 0 1
    2 3 3 1 0
    output
    2 5 4 1 3
    Note

    In the first case, the answer can be {1, 2} or {2, 1}.

    In the second case, another possible answer is {2, 4, 5, 1, 3}.

    /*找第i个数的位置,第i个数所在的那一行肯定不会有比它大的数,行号就是它的位置,注意标记就行了*/
    #include<cstdio> #include<cstring> #include<map> #include<stack> #include<iostream> #include<algorithm> using namespace std; int a[55][55],p[55]; bool vis[55]; int main() { int n; scanf("%d",&n); for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) scanf("%d",&a[i][j]); for(int i=1;i<=n;i++) { int j; for(j=1;j<=n;j++) { int k; for(k=1;k<=n;k++) if(a[j][k]>i)break; if(k==n+1&&!vis[j])break; } vis[j]=1; p[j]=i; } for(int i=1;i<=n;i++) printf("%d ",p[i]); return 0; }
  • 相关阅读:
    51Nod 1119 机器人走方格 V2 组合数学 费马小定理
    Codeforces Round #439 div2 869A The Artful Expedient +869B The Eternal Immortality
    51Nod 1050 循环数组最大子段和 dp
    51Nod 1009 数字1的数量 数位dp
    51Nod 1082 与7无关的数 暴力打表(埃氏筛的感觉)
    POJ 2001 Shortest Prefixes
    字典树模板
    HDU 1251 统计难题
    kmp算法模板
    HDU 2087 剪花布条
  • 原文地址:https://www.cnblogs.com/homura/p/5170868.html
Copyright © 2011-2022 走看看