zoukankan      html  css  js  c++  java
  • codeforces 621D Rat Kwesh and Cheese

    D. Rat Kwesh and Cheese

     

    Wet Shark asked Rat Kwesh to generate three positive real numbers xy and z, from 0.1 to 200.0, inclusive. Wet Krash wants to impress Wet Shark, so all generated numbers will have exactly one digit after the decimal point.

    Wet Shark knows Rat Kwesh will want a lot of cheese. So he will give the Rat an opportunity to earn a lot of cheese. He will hand the three numbers xy and z to Rat Kwesh, and Rat Kwesh will pick one of the these twelve options:

    1. a1 = xyz;
    2. a2 = xzy;
    3. a3 = (xy)z;
    4. a4 = (xz)y;
    5. a5 = yxz;
    6. a6 = yzx;
    7. a7 = (yx)z;
    8. a8 = (yz)x;
    9. a9 = zxy;
    10. a10 = zyx;
    11. a11 = (zx)y;
    12. a12 = (zy)x.

    Let m be the maximum of all the ai, and c be the smallest index (from 1 to 12) such that ac = m. Rat's goal is to find that c, and he asks you to help him. Rat Kwesh wants to see how much cheese he gets, so he you will have to print the expression corresponding to that ac.

    Input

    The only line of the input contains three space-separated real numbers xy and z (0.1 ≤ x, y, z ≤ 200.0). Each of xy and z is given with exactly one digit after the decimal point.

    Output

    Find the maximum value of expression among xyzxzy(xy)z(xz)yyxzyzx(yx)z(yz)xzxyzyx(zx)y(zy)x and print the corresponding expression. If there are many maximums, print the one that comes first in the list.

    xyz should be outputted as x^y^z (without brackets), and (xy)z should be outputted as (x^y)^z (quotes for clarity).

    Sample test(s)
    input
    1.1 3.4 2.5
    output
    z^y^x
    input
    2.0 2.0 2.0
    output
    x^y^z
    input
    1.9 1.8 1.7
    output
    (x^y)^z

    #include<cstdio>
    #include<iostream>
    #include<cmath>
    #include<algorithm>
    #include<cstring>
    using namespace std;
    const char s[12][10]=
    {
        "x^y^z",
        "x^z^y",
        "(x^y)^z",
        "(x^z)^y",
        "y^x^z",
        "y^z^x",
        "(y^x)^z",
        "(y^z)^x",
        "z^x^y",
        "z^y^x",
        "(z^x)^y",
        "(z^y)^x"
    };
    int main()
    {
        long double a[12];
        long double x,y,z;
        cin>>x>>y>>z;
        a[0]=pow(y,z)*log(x);
        a[1]=pow(z,y)*log(x);
        a[2]=a[3]=y*z*log(x);
        a[4]=pow(x,z)*log(y);
        a[5]=pow(z,x)*log(y);
        a[6]=a[7]=x*z*log(y);
        a[8]=pow(x,y)*log(z);
        a[9]=pow(y,x)*log(z);
        a[10]=a[11]=x*y*log(z);
        int pos=0;
        for(int i=1;i<12;i++)
            if(a[i]>a[pos])pos=i;
        printf("%s
    ",s[pos]);
        return 0;
    }
  • 相关阅读:
    BZOJ 1951: [Sdoi2010]古代猪文( 数论 )
    BZOJ 1176: [Balkan2007]Mokia( CDQ分治 + 树状数组 )
    BZOJ 1066: [SCOI2007]蜥蜴( 最大流 )
    BZOJ 1935: [Shoi2007]Tree 园丁的烦恼( 差分 + 离散化 + 树状数组 )
    BZOJ 1297: [SCOI2009]迷路( dp + 矩阵快速幂 )
    BZOJ 1406: [AHOI2007]密码箱( 数论 )
    BZOJ 1876: [SDOI2009]SuperGCD( 更相减损 + 高精度 )
    spfa2
    spfa
    bellmanford队列优化
  • 原文地址:https://www.cnblogs.com/homura/p/5176297.html
Copyright © 2011-2022 走看看