zoukankan      html  css  js  c++  java
  • POJ 2689 Prime Distance

    Prime Distance

     

    Description

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    Input

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

    Output

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

    Sample Input

    2 17
    14 17
    

    Sample Output

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.

    #include<cstdio>
    #include<cstring>
    #include<stack>
    #include<queue>
    #include<cmath>
    #include<set>
    #include<vector>
    #include<iostream>
    #include<map>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef double db;
    typedef long long ll;
    typedef unsigned long long ull;
    const int N=50005;
    bool vis[N];
    bool notprime[N*20];
    ll proprimes[N],len;
    ll primes[N*20];
    pair<ll,ll>minans,maxans;
    void getprim()
    {
        for(int i=2;i*i<N;i++)
            for(int j=i+i;j<N;j+=i)
                vis[j]=1;
        for(int i=2;i<N;i++)
            if(!vis[i])proprimes[len++]=i;
    }
    void solve(ll L,ll U)
    {
        memset(notprime,0,sizeof(notprime));
        for(int i=0;i<len;i++)
        {
            ll b=L/proprimes[i];
            while(b*proprimes[i]<L||b<=1)b++;
            for(ll j=b*proprimes[i];j<=U;j+=proprimes[i])
                notprime[j-L]=1;
        }
        int t=0;
        if(L==1)notprime[0]=1;
        for(ll i=L;i<=U;i++)
        {
            if(!notprime[i-L])
                primes[t++]=i;
        }
        if(t<=1){puts("There are no adjacent primes.");return;}
        int mindist=1000005,maxdist=-1;
        for(int i=1;i<t;i++)
        {
            if(primes[i]-primes[i-1]>maxdist)
                maxdist=primes[i]-primes[i-1],maxans.first=primes[i-1],maxans.second=primes[i];
            if(primes[i]-primes[i-1]<mindist)
                mindist=primes[i]-primes[i-1],minans.first=primes[i-1],minans.second=primes[i];
        }
        printf("%lld,%lld are closest, %lld,%lld are most distant.
    ",minans.first,minans.second,maxans.first,maxans.second);
    }
    int main()
    {
        ll L,U;
        getprim();
        while(~scanf("%lld%lld",&L,&U))solve(L,U);
        return 0;
    }
  • 相关阅读:
    How to add a button in the seletions "More"
    Tags Used In OpenERP 7.0
    OpenERP Web Client设置闲置有效时间
    OpenERP7.0中非admin帐号新增其它用户问题
    Docker 使用docker-compose部署项目
    Docker 安装docker-compose多容器管理服务
    Jenkins集成Docker实现镜像构建和线上发布
    Centos下安装JDK、Maven和Git
    服务注册发现与调度
    Spring boot centos部署启动停止脚本
  • 原文地址:https://www.cnblogs.com/homura/p/5350320.html
Copyright © 2011-2022 走看看