zoukankan      html  css  js  c++  java
  • POJ 2689 Prime Distance

    Prime Distance

     

    Description

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    Input

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

    Output

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

    Sample Input

    2 17
    14 17
    

    Sample Output

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.

    #include<cstdio>
    #include<cstring>
    #include<stack>
    #include<queue>
    #include<cmath>
    #include<set>
    #include<vector>
    #include<iostream>
    #include<map>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef double db;
    typedef long long ll;
    typedef unsigned long long ull;
    const int N=50005;
    bool vis[N];
    bool notprime[N*20];
    ll proprimes[N],len;
    ll primes[N*20];
    pair<ll,ll>minans,maxans;
    void getprim()
    {
        for(int i=2;i*i<N;i++)
            for(int j=i+i;j<N;j+=i)
                vis[j]=1;
        for(int i=2;i<N;i++)
            if(!vis[i])proprimes[len++]=i;
    }
    void solve(ll L,ll U)
    {
        memset(notprime,0,sizeof(notprime));
        for(int i=0;i<len;i++)
        {
            ll b=L/proprimes[i];
            while(b*proprimes[i]<L||b<=1)b++;
            for(ll j=b*proprimes[i];j<=U;j+=proprimes[i])
                notprime[j-L]=1;
        }
        int t=0;
        if(L==1)notprime[0]=1;
        for(ll i=L;i<=U;i++)
        {
            if(!notprime[i-L])
                primes[t++]=i;
        }
        if(t<=1){puts("There are no adjacent primes.");return;}
        int mindist=1000005,maxdist=-1;
        for(int i=1;i<t;i++)
        {
            if(primes[i]-primes[i-1]>maxdist)
                maxdist=primes[i]-primes[i-1],maxans.first=primes[i-1],maxans.second=primes[i];
            if(primes[i]-primes[i-1]<mindist)
                mindist=primes[i]-primes[i-1],minans.first=primes[i-1],minans.second=primes[i];
        }
        printf("%lld,%lld are closest, %lld,%lld are most distant.
    ",minans.first,minans.second,maxans.first,maxans.second);
    }
    int main()
    {
        ll L,U;
        getprim();
        while(~scanf("%lld%lld",&L,&U))solve(L,U);
        return 0;
    }
  • 相关阅读:
    安装MySQL时出现黄色感叹号,提示3306已被占用
    python使用xlrd读取excel数据时,整数变小数的解决办法
    Xenu Link Sleuth 简单好用的链接测试工具 使用说明
    python的with用法(参考)
    关于Selenium HTMLTestRunner 无法生成测试报告
    关于python-生成HTMLTestRunner测试报告
    如何出(改编)一道ACM算法题?
    近期思考(2019.07.20)
    爱,死亡和机器人 第十四集 齐马蓝 中文字幕(Python处理utf8文件获取想要的内容)
    LeetCode 75. Sort Colors (python一次遍历,模拟三路快排的分割操作)
  • 原文地址:https://www.cnblogs.com/homura/p/5350320.html
Copyright © 2011-2022 走看看