zoukankan      html  css  js  c++  java
  • POJ 2689 Prime Distance

    Prime Distance

     

    Description

    The branch of mathematics called number theory is about properties of numbers. One of the areas that has captured the interest of number theoreticians for thousands of years is the question of primality. A prime number is a number that is has no proper factors (it is only evenly divisible by 1 and itself). The first prime numbers are 2,3,5,7 but they quickly become less frequent. One of the interesting questions is how dense they are in various ranges. Adjacent primes are two numbers that are both primes, but there are no other prime numbers between the adjacent primes. For example, 2,3 are the only adjacent primes that are also adjacent numbers. 
    Your program is given 2 numbers: L and U (1<=L< U<=2,147,483,647), and you are to find the two adjacent primes C1 and C2 (L<=C1< C2<=U) that are closest (i.e. C2-C1 is the minimum). If there are other pairs that are the same distance apart, use the first pair. You are also to find the two adjacent primes D1 and D2 (L<=D1< D2<=U) where D1 and D2 are as distant from each other as possible (again choosing the first pair if there is a tie).

    Input

    Each line of input will contain two positive integers, L and U, with L < U. The difference between L and U will not exceed 1,000,000.

    Output

    For each L and U, the output will either be the statement that there are no adjacent primes (because there are less than two primes between the two given numbers) or a line giving the two pairs of adjacent primes.

    Sample Input

    2 17
    14 17
    

    Sample Output

    2,3 are closest, 7,11 are most distant.
    There are no adjacent primes.

    #include<cstdio>
    #include<cstring>
    #include<stack>
    #include<queue>
    #include<cmath>
    #include<set>
    #include<vector>
    #include<iostream>
    #include<map>
    #include<string>
    #include<algorithm>
    using namespace std;
    typedef double db;
    typedef long long ll;
    typedef unsigned long long ull;
    const int N=50005;
    bool vis[N];
    bool notprime[N*20];
    ll proprimes[N],len;
    ll primes[N*20];
    pair<ll,ll>minans,maxans;
    void getprim()
    {
        for(int i=2;i*i<N;i++)
            for(int j=i+i;j<N;j+=i)
                vis[j]=1;
        for(int i=2;i<N;i++)
            if(!vis[i])proprimes[len++]=i;
    }
    void solve(ll L,ll U)
    {
        memset(notprime,0,sizeof(notprime));
        for(int i=0;i<len;i++)
        {
            ll b=L/proprimes[i];
            while(b*proprimes[i]<L||b<=1)b++;
            for(ll j=b*proprimes[i];j<=U;j+=proprimes[i])
                notprime[j-L]=1;
        }
        int t=0;
        if(L==1)notprime[0]=1;
        for(ll i=L;i<=U;i++)
        {
            if(!notprime[i-L])
                primes[t++]=i;
        }
        if(t<=1){puts("There are no adjacent primes.");return;}
        int mindist=1000005,maxdist=-1;
        for(int i=1;i<t;i++)
        {
            if(primes[i]-primes[i-1]>maxdist)
                maxdist=primes[i]-primes[i-1],maxans.first=primes[i-1],maxans.second=primes[i];
            if(primes[i]-primes[i-1]<mindist)
                mindist=primes[i]-primes[i-1],minans.first=primes[i-1],minans.second=primes[i];
        }
        printf("%lld,%lld are closest, %lld,%lld are most distant.
    ",minans.first,minans.second,maxans.first,maxans.second);
    }
    int main()
    {
        ll L,U;
        getprim();
        while(~scanf("%lld%lld",&L,&U))solve(L,U);
        return 0;
    }
  • 相关阅读:
    第二阶段个人博客八
    第二阶段个人博客七
    第二阶段个人博客六
    第二阶段个人博客五
    第二阶段个人博客四
    第十五周学习进度表
    如何选择合适的图表类型
    参加技术会议的一些小窍门
    提高Scrum站会效率的一个小工具
    用6个字符写出任意的Javascript代码
  • 原文地址:https://www.cnblogs.com/homura/p/5350320.html
Copyright © 2011-2022 走看看