zoukankan      html  css  js  c++  java
  • SPOJ 7758 Growing Strings

    MGLAR10 - Growing Strings 

    Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is usually the case in regular farms, they grow strings. A string is a sequence of characters.
    Strings have the particularity that, as they grow, they add characters to the left and/or to the right of themselves, but they never lose characters, nor insert new characters in the middle.Gene and Gina have a collection of photos of some strings at different times during their growth.
    The problem is that the collection is not annotated, so they forgot to which string each photo belongs to. They want to put together a wall to illustrate strings growing procedures, but they
    need your help to find an appropriate sequence of photos.
    Each photo illustrates a string. The sequence of photos must be such that if si comes immediately before si+1 in the sequence, then si+1 is a string that may have grown from si (i.e., si appears as a consecutive substring of si+1). Also, they do not want to use repeated pictures,so all strings in the sequence must be different.
    Given a set of strings representing all available photos, your job is to calculate the size of the largest sequence they can produce following the guidelines above.
    Gene and Gina have a particular kind of farm. Instead of growing animals and vegetables, as it is usually the case in regular farms, they grow strings. A string is a sequence of characters. Strings have the particularity that, as they grow, they add characters to the left and/or to the right of themselves, but they never lose characters, nor insert new characters in the middle. 
     Gene and Gina have a collection of photos of some strings at different times during their growth. The problem is that the collection is not annotated, so they forgot to which string each photo belongs to. They want to put together a wall to illustrate strings growing procedures, but they need your help to find an appropriate sequence of photos.
    Each photo illustrates a string. The sequence of photos must be such that if si comes immediately before si+1 in the sequence, then si+1 is a string that may have grown from si (i.e., si appears as a consecutive substring of si+1). Also, they do not want to use repeated pictures, so all strings in the sequence must be different.
    Given a set of strings representing all available photos, your job is to calculate the size of the largest sequence they can produce following the guidelines above.

    Input

    Each test case is given using several lines. The first line contains an integer N representing the number of strings in the set (1 ≤ N ≤ 10^4). Each of the following N lines contains a different non-empty string of at most 1000 lowercase letters of the English alphabet. Within each test case, the sum of the lengths of all strings is at most 10^6.

    The last test case is followed by a line containing one zero.

    Output

    For each test case output a single line with a single integer representing the size of the largest sequence of photos that can be produced.

    Sample

    input
    6 plant ant cant decant deca an 2 supercalifragilisticexpialidocious rag 0

    output
    4 2

    #include<cstdio>
    #include<cstdlib>
    #include<queue>
    #include<cstring>
    using namespace std;
    const int sigma_size=26;
    const int N=1e4+5;
    char s[1005];
    struct Trie
    {
        Trie* next[sigma_size];
        Trie* fail;
        int v,cnt,sum;
        Trie()
        {
            memset(next,0,sizeof(next));
            fail=0;
            cnt=sum=v=0;
        }
    };
    struct AhoCorasickAutomata
    {
        Trie *root;
        AhoCorasickAutomata()
        {
            root=new Trie();
        }
        inline int idx(char c)
        {
            return c-'a';
        }
        void _insert(char *s,int v)
        {
            int len=strlen(s);
            Trie* p=root;
            for(int i=0;i<len;i++)
            {
                int c=idx(s[i]);
                if(p->next[c]==0)
                {
    
                    Trie* q=new Trie();
                    p->next[c]=q;
                }
                p=p->next[c];
            }
            p->v=v,p->cnt++;
        }
        void getfail()
        {
            queue<Trie*>Q;
            root->fail=0;
            Q.push(root);
            while(!Q.empty())
            {
                Trie* u=Q.front();Q.pop();
                for(int i=0;i<sigma_size;i++)
                    if(u->next[i])
                    {
                        Trie* p=u->fail;
                        while(p&&!p->next[i])p=p->fail;
                        u->next[i]->fail=p?p->next[i]:root;
                        u->next[i]->sum=max(u->sum,u->next[i]->fail->sum)+u->next[i]->cnt;
                        Q.push(u->next[i]);
                    }
            }
        }
    };
    int dfs(Trie* u,int ans)
    {
        ans=max(ans,u->sum);
        for(int i=0;i<sigma_size;i++)
            if(u->next[i])
                ans=max(ans,dfs(u->next[i],ans));
        return ans;
    }
    int main()
    {
        int n;
        while(scanf("%d",&n),n)
        {
            AhoCorasickAutomata ac;
            for(int i=1;i<=n;i++)
            {
                scanf("%s",s);
                ac._insert(s,i);
            }
            ac.getfail();
            printf("%d
    ",dfs(ac.root,-1));
        }
        return 0;
    }
  • 相关阅读:
    Win Server 2008 R2 一键配置全环境 PHP5+MYSQL5+ZEND+PHPMYADMIN
    服务器加固,安全狗V4.0正式版 (Windows)
    Win server 2008 R2激活工具使用图文教程(SK Patch v1 R2 Final OEM)
    Laoy8 V4.0 营销插件
    OK3W发布插件
    流量精灵(P2P方式,刷真实流量)
    aspcms2发布插件
    今天写一篇技术文章,关于TemplateEngine的。
    全面分析新浪博客的登录过程
    网站克隆插件
  • 原文地址:https://www.cnblogs.com/homura/p/5788991.html
Copyright © 2011-2022 走看看