Counting Offspring
Problem Description
You are given a tree, it’s root is p, and the node is numbered from 1 to n. Now define f(i) as the number of nodes whose number is less than i in all the succeeding nodes of node i. Now we need to calculate f(i) for any possible i.
Input
Multiple cases (no more than 10), for each case:
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.
The first line contains two integers n (0<n<=10^5) and p, representing this tree has n nodes, its root is p.
Following n-1 lines, each line has two integers, representing an edge in this tree.
The input terminates with two zeros.
Output
For each test case, output n integer in one line representing f(1), f(2) … f(n), separated by a space.
Sample Input
15 7
7 10
7 1
7 9
7 3
7 4
10 14
14 2
14 13
9 11
9 6
6 5
6 8
3 15
3 12
0 0
Sample Output
0 0 0 0 0 1 6 0 3 1 0 0 0 2 0
#include<cstdio> #include<vector> #include<cstring> #include<algorithm> #define pb push_back using namespace std; const int N=1e5+5; int n,rt,dfs_clock,L[N],R[N],sum[N],ans[N]; vector<int>G[N]; inline void init() { memset(sum,0,sizeof(sum)); for(int i=1;i<=n;i++)G[i].clear(); dfs_clock=0; } void dfs(int u,int fa) { L[u]=++dfs_clock; for(int len=G[u].size(),i=0;i<len;i++) { int v=G[u][i]; if(v==fa)continue; dfs(v,u); } R[u]=dfs_clock; } inline void add(int pos) { for(int i=pos;i<=n;i+=i&(-i)) sum[i]+=1; } inline int query(int pos) { int res=0; for(int i=pos;i>0;i-=i&(-i)) res+=sum[i]; return res; } int main() { while(scanf("%d%d",&n,&rt),n|rt) { init(); for(int _=0;_<n-1;_++) { int u,v; scanf("%d%d",&u,&v); G[u].pb(v),G[v].pb(u); } dfs(rt,-1); for(int i=1;i<=n;i++) { ans[i]=query(R[i])-query(L[i]-1); add(L[i]); } for(int i=1;i<=n;i++) printf(i==n?"%d ":"%d ",ans[i]); } return 0; }