zoukankan      html  css  js  c++  java
  • HDU 1845 Jimmy’s Assignment

    Jimmy’s Assignment



    Problem Description
    Jimmy is studying Advanced Graph Algorithms at his university. His most recent assignment is to find a maximum matching in a special kind of graph. This graph is undirected, has N vertices and each vertex has degree 3. Furthermore, the graph is 2-edge-connected (that is, at least 2 edges need to be removed in order to make the graph disconnected). A matching is a subset of the graph’s edges, such that no two edges in the subset have a common vertex. A maximum matching is a matching having the maximum cardinality.
      Given a series of instances of the special graph mentioned above, find the cardinality of a maximum matching for each instance.
     
    Input
    The first line of input contains an integer number T, representing the number of graph descriptions to follow. Each description contains on the first line an even integer number N (4<=N<=5000), representing the number of vertices. Each of the next 3*N/2 lines contains two integers A and B, separated by one blank, denoting that there is an edge between vertex A and vertex B. The vertices are numbered from 1 to N. No edge may appear twice in the input.
     
    Output
    For each of the T graphs, in the order given in the input, print one line containing the cardinality of a maximum matching.
     
    Sample Input
    2
    4
    1 2
    1 3
    1 4
    2 3
    2 4
    3 4
    4
    1 2
    1 3
    1 4
    2 3
    2 4
    3 4
     
     
    Sample Output
    2
    2
     
    #include<cstdio>
    #include<queue>
    #include<cctype>
    #include<cstring>
    #include<vector>
    #include<algorithm>
    #define pb push_back
    using namespace std;
    const int INF=0x3f3f3f3f;
    int n,k,vis[5005],mx[5005],my[5005],dx[5005],dy[5005],dis;
    vector<int>G[5005];
    bool dfs(int u)
    {
        for(int len=G[u].size(),i=0;i<len;i++)
        {
            int v=G[u][i];
            if(!vis[v]&&dy[v]==dx[u]+1)
            {
                vis[v]=1;
                if(my[v]!=-1&&dy[v]==dis)continue;
                if(my[v]==-1||dfs(my[v]))
                {
                    my[v]=u;
                    mx[u]=v;
                    return 1;
                }
            }
        }
        return 0;
    }
    bool bfs()
    {
        queue<int>Q;
        dis=INF;
        memset(dx,-1,sizeof(dx));
        memset(dy,-1,sizeof(dy));
        for(int i=1;i<=n;i++)
        {
            if(mx[i]==-1)
                Q.push(i),dx[i]=0;
        }
        while(!Q.empty())
        {
            int u=Q.front();
            Q.pop();
            if(dx[u]>dis)break;
            for(int i=0,len=G[u].size();i<len;i++)
            {
                int v=G[u][i];
                if(dy[v]==-1)
                {
                    dy[v]=dx[u]+1;
                    if(my[v]==-1)dis=dy[v];
                    else
                    {
                        dx[my[v]]=dy[v]+1;
                        Q.push(my[v]);
                    }
                }
            }
        }
        return dis!=INF;
    }
    int match()
    {
        int ans=0;
        memset(mx,-1,sizeof(mx));
        memset(my,-1,sizeof(my));
        while(bfs())
        {
            memset(vis,0,sizeof(vis));
            for(int i=1;i<=n;i++)
            {
                if(mx[i]==-1&&dfs(i))
                    ans++;
            }
        }
        return ans;
    }
    int main()
    {
        int T;
        scanf("%d",&T);
        while(T--)
        {
            scanf("%d",&n);
            for(int i=1;i<=n;i++)G[i].clear();
            for(int i=0;i<3*n/2;i++)
            {
                int u,v;
                scanf("%d%d",&u,&v);
                G[u].pb(v),G[v].pb(u);
            }
            printf("%d
    ",match()>>1);
        }
        return 0;
    }
  • 相关阅读:
    乒乓球运动中两种最基本的握拍方法
    Google 的 OKR 制度与KPI 有什么不同?
    推荐物品时,为了消除个人特殊癖好,或者未打分的情况,可通过加权计算进行修正
    甘特图
    解耦、异步、削峰 消息队列
    供给侧
    货币化 经济货币化 信用 经济金融化
    新浪广告交易平台(SAX)DSP手册
    SU suspike命令学习
    SU Demos-02Filtering-02Subfilt
  • 原文地址:https://www.cnblogs.com/homura/p/5884067.html
Copyright © 2011-2022 走看看