zoukankan      html  css  js  c++  java
  • POJ 3281 Dining

    Dining

     

    Description

    Cows are such finicky eaters. Each cow has a preference for certain foods and drinks, and she will consume no others.

    Farmer John has cooked fabulous meals for his cows, but he forgot to check his menu against their preferences. Although he might not be able to stuff everybody, he wants to give a complete meal of both food and drink to as many cows as possible.

    Farmer John has cooked F (1 ≤ F ≤ 100) types of foods and prepared D (1 ≤ D ≤ 100) types of drinks. Each of his N (1 ≤ N ≤ 100) cows has decided whether she is willing to eat a particular food or drink a particular drink. Farmer John must assign a food type and a drink type to each cow to maximize the number of cows who get both.

    Each dish or drink can only be consumed by one cow (i.e., once food type 2 is assigned to a cow, no other cow can be assigned food type 2).

    Input

    Line 1: Three space-separated integers: NF, and D 
    Lines 2..N+1: Each line i starts with a two integers Fi and Di, the number of dishes that cow i likes and the number of drinks that cow i likes. The next Fi integers denote the dishes that cow i will eat, and the Di integers following that denote the drinks that cow i will drink.

    Output

    Line 1: A single integer that is the maximum number of cows that can be fed both food and drink that conform to their wishes

    Sample Input

    4 3 3
    2 2 1 2 3 1
    2 2 2 3 1 2
    2 2 1 3 1 2
    2 1 1 3 3

    Sample Output

    3

    Hint

    One way to satisfy three cows is: 
    Cow 1: no meal 
    Cow 2: Food #2, Drink #2 
    Cow 3: Food #1, Drink #1 
    Cow 4: Food #3, Drink #3 
    The pigeon-hole principle tells us we can do no better since there are only three kinds of food or drink. Other test data sets are more challenging, of course.
     
    #include<cstdio>
    #include<vector>
    #include<queue>
    #include<cstring>
    #define pb push_back
    using namespace std;
    typedef long long LL;
    const int MAXN=405;
    vector<int>cowf[MAXN],cowd[MAXN];
    struct dinic
    {
        struct Edge
        {
            int from,to,cap,flow;
            Edge(){}
            Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){};
        };
        int s,t,d[MAXN],cur[MAXN];
        bool vis[MAXN];
        vector<Edge>edges;
        vector<int>G[MAXN];
        inline void init()
        {
            for(int i=0;i<100;i++)G[i].clear();
            edges.clear();
        }
        void addedge(int from,int to,int cap)
        {
            edges.push_back((Edge){from,to,cap,0});
            edges.push_back((Edge){to,from,0,0});
            int m=edges.size();
            G[from].push_back(m-2);
            G[to].push_back(m-1);
        }
        bool bfs()
        {
            memset(vis,0,sizeof(vis));
            queue<int>q;
            q.push(s);
            d[s]=0;
            vis[s]=1;
            while(!q.empty())
            {
                int x=q.front();q.pop();
                for(int i=0;i<G[x].size();i++)
                {
                    Edge& e=edges[G[x][i]];
                    if(!vis[e.to]&&e.cap>e.flow)
                    {
                        vis[e.to]=1;
                        d[e.to]=d[x]+1;
                        q.push(e.to);
                    }
                }
            }
            return vis[t];
        }
        int dfs(int x,int a)
        {
            if(x==t||a==0)return a;
            int flow=0,f;
            for(int& i=cur[x];i<G[x].size();i++)
            {
                Edge& e=edges[G[x][i]];
                if(d[x]+1==d[e.to]&&(f=dfs(e.to,min(a,e.cap-e.flow)))>0)
                {
                    e.flow+=f;
                    edges[G[x][i]^1].flow-=f;
                    flow+=f;
                    a-=f;
                    if(a==0)break;
                }
            }
            return flow;
        }
        int maxflow(int s,int t)
        {
            this->s=s,this->t=t;
            int flow=0;
            while(bfs())
            {
                memset(cur,0,sizeof(cur));
                flow+=dfs(s,2e5+5);
            }
            return flow;
        }
    }dc;
    int main()
    {
        int N,F,D;
        scanf("%d%d%d",&N,&F,&D);
        for(int i=1;i<=N;i++)
        {
            int f,d;
            scanf("%d%d",&f,&d);
            for(int j=0;j<f;j++)
            {
                int t;
                scanf("%d",&t);
                cowf[i].pb(t);
            }
            for(int j=0;j<d;j++)
            {
                int t;
                scanf("%d",&t);
                cowd[i].pb(t);
            }
        }
        for(int i=1;i<=F;i++)
            dc.addedge(0,i,1);
        for(int i=1;i<=D;i++)
            dc.addedge(F+N*2+i,F+2*N+D+1,1);
        for(int i=1;i<=N;i++)
            dc.addedge(F+i,F+N+i,1);
        for(int i=1;i<=N;i++)
        {
            for(int j=0;j<cowf[i].size();j++)
                dc.addedge(cowf[i][j],F+i,1);
            for(int j=0;j<cowd[i].size();j++)
                dc.addedge(F+N+i,F+N*2+cowd[i][j],1);
        }
        printf("%d
    ",dc.maxflow(0,F+2*N+D+1));
        return 0;
    }
  • 相关阅读:
    批量导入
    循环语句
    判断循环常见
    常见C运算符
    oc将字符串中单词按照出现次数(次数都不一样)降序排序,排序之后单词只出现一次,源字符串中单词用下划线连接,生成字符串也用下滑线连接
    把字符串中的字母大小写反转OC
    查找子串出现次数OC
    现有一个数组NSMutableArray, 数组有若干个NSString的元素,进行选择法排序
    终端的一些命令
    编程语言名字来历
  • 原文地址:https://www.cnblogs.com/homura/p/6085228.html
Copyright © 2011-2022 走看看