zoukankan      html  css  js  c++  java
  • 【刷题】HDU 6184 Counting Stars

    Problem Description

    Little A is an astronomy lover, and he has found that the sky was so beautiful!

    So he is counting stars now!

    There are n stars in the sky, and little A has connected them by m non-directional edges.

    It is guranteed that no edges connect one star with itself, and every two edges connect different pairs of stars.

    Now little A wants to know that how many different "A-Structure"s are there in the sky, can you help him?

    An "A-structure" can be seen as a non-directional subgraph G, with a set of four nodes V and a set of five edges E.

    If V=(A,B,C,D) and E=(AB,BC,CD,DA,AC), we call G as an "A-structure".

    It is defined that "A-structure" G1=V1+E1 and G2=V2+E2 are same only in the condition that V1=V2 and E1=E2.

    Input

    There are no more than 300 test cases.

    For each test case, there are 2 positive integers n and m in the first line.

    2≤n≤105, 1≤m≤min(2×105,n(n−1)2)

    And then m lines follow, in each line there are two positive integers u and v, describing that this edge connects node u and node v.

    1≤u,v≤n

    ∑n≤3×105,∑m≤6×105

    Output

    For each test case, just output one integer--the number of different "A-structure"s in one line.

    Sample Input

    4 5
    1 2
    2 3
    3 4
    4 1
    1 3
    4 6
    1 2
    2 3
    3 4
    4 1
    1 3
    2 4

    Sample Output

    1
    6

    Description(CHN)

    给你一个图,找有多少个

    Solution

    三元环裸题
    把每条边属于多少个三元环求出来,然后对于每条边算贡献就好了
    如何求三元环,这是某道题目的solution的一部分

    #include<bits/stdc++.h>
    #define ui unsigned int
    #define ll long long
    #define db double
    #define ld long double
    #define ull unsigned long long
    const int MAXN=300000+10,MAXM=600000+10;
    int n,m,e,beg[MAXN],nex[MAXM<<1],to[MAXM<<1],cnt[MAXN],in[MAXN],arv[MAXN],pres[MAXN],clk;
    struct node{
    	int u,v;
    };
    node side[MAXN];
    ll ans=0;
    template<typename T> inline void read(T &x)
    {
    	T data=0,w=1;
    	char ch=0;
    	while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
    	if(ch=='-')w=-1,ch=getchar();
    	while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
    	x=data*w;
    }
    template<typename T> inline void write(T x,char ch='')
    {
    	if(x<0)putchar('-'),x=-x;
    	if(x>9)write(x/10);
    	putchar(x%10+'0');
    	if(ch!='')putchar(ch);
    }
    template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
    template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
    template<typename T> inline T min(T x,T y){return x<y?x:y;}
    template<typename T> inline T max(T x,T y){return x>y?x:y;}
    inline void insert(int x,int y)
    {
    	to[++e]=y;
    	nex[e]=beg[x];
    	beg[x]=e;
    }
    int main()
    {
    	while(scanf("%d%d",&n,&m)!=EOF)
    	{
    		e=ans=0;clk=1;
    		for(register int i=1;i<=n;++i)beg[i]=in[i]=arv[i]=pres[i]=0;
    		for(register int i=1,u,v;i<=m;++i)
    		{
    			cnt[i]=0;
    			read(u);read(v);
    			side[i].u=u;side[i].v=v;
    			in[u]++;in[v]++;
    		}
    		for(register int i=1,u,v;i<=m;++i)
    		{
    			u=side[i].u,v=side[i].v;
    			if(in[v]>in[u]||(in[v]==in[u]&&v>u))insert(u,v);
    			else insert(v,u);
    		}
    		for(register int i=1,u,v;i<=m;++i,++clk)
    		{
    			u=side[i].u,v=side[i].v;
    			for(register int j=beg[u];j;j=nex[j])arv[to[j]]=clk,pres[to[j]]=j;
    			for(register int j=beg[v];j;j=nex[j])
    				if(arv[to[j]]==clk)cnt[i]++,cnt[j]++,cnt[pres[to[j]]]++;
    		}
    		for(register int i=1;i<=m;++i)ans+=1ll*cnt[i]*(cnt[i]-1)/2;
    		write(ans,'
    ');
    	}
    	return 0;
    }
    
  • 相关阅读:
    个人博客12
    《梦断代码》阅读笔记03
    个人博客11
    个人博客10
    【Codeforces 404C】Restore Graph
    【Codeforces 476C】Dreamoon and Sums
    【Codeforces 242C】King's Path
    【Codeforces 382C】Arithmetic Progression
    【Codeforces 1096D】Easy Problem
    【Codeforces 494A】Treasure
  • 原文地址:https://www.cnblogs.com/hongyj/p/9260622.html
Copyright © 2011-2022 走看看