题目描述
假设有 (n) 根柱子,现要按下述规则在这 (n) 根柱子中依次放入编号为 (1, 2, 3, 4, cdots) 的球。
-
每次只能在某根柱子的最上面放球。
-
在同一根柱子中,任何 (2) 个相邻球的编号之和为完全平方数。
试设计一个算法,计算出在 (n) 根柱子上最多能放多少个球。
输入格式
文件第 (1) 行有 (1) 个正整数 (n),表示柱子数。
输出格式
第一行是球数。接下来的 (n) 行,每行是一根柱子上的球的编号。
样例
样例输入
4
样例输出
11
1 8
2 7 9
3 6 10
4 5 11
数据范围与提示
(1 leq n leq 55)
题解
枚举答案
对于一个新的数字,它可以新出一根柱子,即直接与源点相连,容量为 (1) ;还可以接在别的数字的后面,即与满足条件的其它数字连边
当最大流超过 (n) ,就说明需要的柱子超过 (n) 了,枚举的数字的上一个就是答案
#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
const int MAXN=4100+10,MAXM=300000+10,inf=0x3f3f3f3f;
int n,ans,e=1,beg[MAXN],nex[MAXM],to[MAXM],cap[MAXM],out[MAXM],pt[MAXN],level[MAXN],cur[MAXN],vis[MAXN],clk,s,t,res;
std::queue<int> q;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch=' ')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!=' ')putchar(ch);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
inline bool check(int x)
{
int qt=std::sqrt(x);
return qt*qt==x;
}
inline void insert(int x,int y,int z)
{
to[++e]=y;
nex[e]=beg[x];
out[e]=x;
beg[x]=e;
cap[e]=z;
to[++e]=x;
nex[e]=beg[y];
out[e]=y;
beg[y]=e;
cap[e]=0;
}
inline bool bfs()
{
memset(level,0,sizeof(level));
level[s]=1;
q.push(s);
while(!q.empty())
{
int x=q.front();
q.pop();
for(register int i=beg[x];i;i=nex[i])
if(cap[i]&&!level[to[i]])level[to[i]]=level[x]+1,q.push(to[i]);
}
return level[t];
}
inline int dfs(int x,int maxflow)
{
if(x==t||!maxflow)return maxflow;
int res=0;
vis[x]=clk;
for(register int &i=cur[x];i;i=nex[i])
if((vis[to[i]]^vis[x])&&cap[i]&&level[to[i]]==level[x]+1)
{
int f=dfs(to[i],min(maxflow,cap[i]));
res+=f;
cap[i]-=f;
cap[i^1]+=f;
maxflow-=f;
if(!maxflow)break;
}
vis[x]=0;
return res;
}
inline int Dinic()
{
while(bfs())clk++,memcpy(cur,beg,sizeof(cur)),res+=dfs(s,inf);
return res;
}
inline void dfs(int x)
{
if(!x)return ;
vis[x]=1;
write(x,' ');
dfs(pt[x]);
}
int main()
{
read(n);
s=3999,t=4000;
for(register int i=1;;++i)
{
insert(s,i,1);insert(i+1600,t,1);
for(register int j=1;j<i;++j)
if(check(i+j))insert(j,i+1600,1);
if(i-Dinic()>n)
{
ans=i-1;
break;
}
}
write(ans,'
');
for(register int i=2;i<=e;i+=2)
if(!cap[i]&&out[i]!=s&&to[i]!=t)pt[out[i]]=to[i]-1600;
for(register int i=1;i<=ans;++i)
if(!vis[i])dfs(i),puts("");
return 0;
}