zoukankan      html  css  js  c++  java
  • Max Sum

    Problem Description
    Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
     
    Input
    The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
     
    Output
    For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
     
    Sample Input
    2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
     
    Sample Output
    Case 1: 14 1 4 Case 2: 7 1 6
     
     
    根据题目要求,每一个位置有不同的状态和,用dp[]数组记录当前的和,当从第一个数开始,依次往后累加,dp[i]记录i位置的和,当dp[i-1]<0时应该舍弃前面的和,将当前位置的arr[i]数值赋值给dp[i],然后寻找dp[i](i:1~n)中的最大值,然后记录当前的位置为end,再以当前位置往前寻找 start ,如果出现dp[i](i:end~0)<0则退出并将start赋值为i

    #include<stdio.h>
    int main(){
    int t,n,max,start,end;
    int arr[100001];
    int dp[100001];
    scanf("%d",&t);
    for(int j=0;j<t;j++){
    max =-9999;
    scanf("%d",&n);
    for(int i=0;i<n;i++){
    scanf("%d",&arr[i]);
    }

    dp[0]=arr[0];
    start=end=0;
    for(int i=1;i<n;i++){
    if(dp[i-1]>=0){
    dp[i]=dp[i-1]+arr[i];
    }else
    dp[i]=arr[i];
    }
    for(int i=0;i<n;i++){
    if(max<dp[i]){
    max=dp[i];
    end = i;
    }
    }
    // start = end;// 这里是一个关键点,在这里wrong N次
    for(int i=end;i>=0;i--){
    if(dp[i]>=0){
    start=i;
    }else
    break;
    }
    printf("Case %d: ",j+1);
    printf("%d %d %d ",max,start+1,end+1);
    if(j!=t-1)
    printf(" ");
    }

    return 0;
    }

  • 相关阅读:
    比较实用的断点调试技巧
    objc非主流代码技巧
    0代码ViewController
    xib的动态桥接
    ios中集合遍历方法的比较和技巧
    再见了NSLog
    Reactive Cocoa Tutorial [4] = 只取所需的Filters
    objc@interface的设计哲学与设计技巧
    ARC下dealloc过程及.cxx_destruct的探究
    Reactive Cocoa Tutorial [3] = "RACSignal的巧克力工厂“;
  • 原文地址:https://www.cnblogs.com/hoojjack/p/3973479.html
Copyright © 2011-2022 走看看