zoukankan      html  css  js  c++  java
  • Elasticsearch-mapper 基于注解方式生成mapping(2.0以上)

    Elasticsearch生成mapping的方式上有多种方式,我们可以把mapping做成配置文件,也可以用spring-data-elasticsearch基于注解生成。

    在基于注解生成这种方式上spring-data的注解还是不错的,但是如果想深度定制化一些参数spring-data却是不支持的,比如针对分词的string类型字段的fielddata加载设置。

    又如果项目中不想引入spring但又想使用基于注解方式生成mapping,这时spring-data就不行了,这里有另一种选择:elasticsearch-mapper。

    elasticsearch-mapper支持绝大部分数据类型和相关参数的设置,使用是请参考官网对各种数据类型和相关参数:ES2.x官网mapping设置

    下面是使用示例:

     1 @Document(type = "book", _timestamp = true, _ttl = @TTL(enabled = true, _default = "5m"))  
     2 public class Book {  
     3     /*ID,只能是Long或者String类型*/  
     4     @Id  
     5     private Long id;  
     6   
     7     /*数值类型*/  
     8     @Field(type = FieldType.Double, ignoreMalformed = true)  
     9     private Double price;  
    10   
    11     /*数值类型*/  
    12     @Field(type = FieldType.Integer)  
    13     private Integer pageCount;  
    14   
    15     /*未分词String型*/  
    16     @Field(type = FieldType.String, index = FieldIndex.not_analyzed)  
    17     private String isnNo;  
    18   
    19     /*bool型*/  
    20     @Field(type = FieldType.Boolean, nullValue = "false")  
    21     private Boolean isValid;  
    22   
    23     /*日期类型*/  
    24     @Field(type = FieldType.Date, format = DateFormat.basic_time_no_millis)  
    25     private Date publishDate;  
    26   
    27     /*分词String类型,并设置fielddata加载限制(当然也可不设置用默认)*/  
    28     @Field(  
    29             type = FieldType.String,  
    30             index = FieldIndex.analyzed,  
    31             analyzer = "ik_max_word",  
    32             searchAnalyzer = "ik_smart",  
    33             termVector = TermVector.with_positions_offsets,  
    34             fielddata = @Fielddata(  
    35                     format = FielddataFormat.paged_bytes,  
    36                     frequency = @FielddataFrequencyFilter(  
    37                             enable = true,  
    38                             min = 0.001,  
    39                             max = 1.2,  
    40                             minSegmentSize = 500  
    41                     ),  
    42                     loading = FielddataLoading.eager_global_ordinals  
    43             )  
    44   
    45     )  
    46     private String author;  
    47   
    48     /*multi field 类型(用于多字段搜索)*/  
    49     @MultiField(  
    50             mainField = @Field(type = FieldType.String, index = FieldIndex.analyzed, analyzer = "ik_max_word", searchAnalyzer = "ik_smart"),  
    51             otherFields = {  
    52                     @MultiNestedField(dotSuffix = "pinyin", nestedField = @Field(  
    53                             type = FieldType.String,  
    54                             index = FieldIndex.analyzed,  
    55                             analyzer = "lc_index",  
    56                             searchAnalyzer = "lc_search")  
    57                     ),  
    58                     @MultiNestedField(dotSuffix = "english", nestedField = @Field(  
    59                             type = FieldType.String,  
    60                             index = FieldIndex.analyzed,  
    61                             analyzer = "standard")  
    62                     )  
    63             }  
    64     )  
    65     private String title;  
    66   
    67     /*Completion Context Suggester配置(如果不配置CompletionContext则是Completion Suggester)*/  
    68     @CompletionField(analyzer = "ik", payloads = true, context = {  
    69             @CompletionContext(name = "bookType", type = CompletionContextType.category, defaultVal = {"algorithm"}),  
    70             @CompletionContext(name = "bookColor", type = CompletionContextType.category, defaultVal = {"red"})  
    71     })  
    72     private String suggestContextField;  
    73   
    74     /*二进制类型*/  
    75     @Field(type = FieldType.Binary)  
    76     private byte[] pdf;  
    77   
    78     /*内嵌类型*/  
    79     @NestedObject(clazz = SalesArea.class)  
    80     private SalesArea salesArea;  
    81       
    82 }

    [Reference]

    [1] http://blog.csdn.net/chennanymy/article/details/52663589

  • 相关阅读:
    Linux磁盘分区(二):删除
    Linux磁盘分区(一):添加
    Linux下查看系统版本号信息的方法
    php计算多个集合的笛卡尔积实例详解
    linux下php7安装memcached、redis扩展
    Linux积累 命令之cat和wc
    php数据结构与算法
    主流PHP框架间的比较(Zend Framework,CakePHP,CodeIgniter,Symfony,ThinkPHP,FleaPHP)
    [深入学习Redis]RedisAPI的原子性分析
    Cookie例子
  • 原文地址:https://www.cnblogs.com/hoojjack/p/8196193.html
Copyright © 2011-2022 走看看