实现一个简单的RNN(代码如下)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data from tensorflow.contrib import rnn mnist = input_data.read_data_sets('MNIST_data', one_hot=True) batch_size = 50 num_batch = mnist.train.num_examples // batch_size # 输入(图片尺寸28*28) num_input = 28 # 一行28个数据 max_time = 28 # 行数量 LSTM_size = 100 # 隐藏单元数量(block数量) num_classes = 10 # 10个分类(对应输出) x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) weights = tf.Variable(tf.truncated_normal([LSTM_size, num_classes], stddev=0.1)) biases = tf.Variable(tf.constant(0.1, shape=[num_classes])) def RNN(X): # inputs格式固定:[batch_size, max_time, num_input] inputs = tf.reshape(X, [-1, max_time, num_input]) # 定义LSTM基本的cell LSTM_cell = rnn.BasicLSTMCell(LSTM_size) outputs, final_state = tf.nn.dynamic_rnn(LSTM_cell, inputs, dtype=tf.float32) results = tf.nn.softmax(tf.matmul(final_state[1], weights) + biases) return results prediction = RNN(x) loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(logits=prediction, labels=y)) train = tf.train.AdamOptimizer(0.0001).minimize(loss) correct_prediction = tf.equal(tf.argmax(prediction, 1), tf.argmax(y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for epoch in range(6): for batch in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(train, feed_dict={x: batch_xs, y: batch_ys}) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print('iter' + str(epoch) + ', testing accuracy:' + str(acc))