编写简单的单层网络实现MNIST数据集分类(代码如下)
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data # 载入数据 """one_hot参数把标签转化到0-1之间 """ mnist = input_data.read_data_sets("MNIST_data", one_hot=True) # 每个批次大小(每次放入训练图像数量) batch_size = 100 # 批次数量 num_batch = mnist.train.num_examples // batch_size x = tf.placeholder(tf.float32, [None, 784]) y = tf.placeholder(tf.float32, [None, 10]) w = tf.Variable(tf.zeros([784, 10])) b = tf.Variable(tf.random_normal([10])) prediction = tf.nn.softmax(tf.matmul(x, w) + b) # 概率值转化: softmax() # loss = tf.reduce_mean(tf.square(y - prediction)) # 二次代价函数 loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits_v2(labels=y, logits=prediction)) # 交叉熵代价函数 train_step = tf.train.GradientDescentOptimizer(0.2).minimize(loss) init = tf.global_variables_initializer() correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(prediction, 1)) # argmax()返回一维张量中最大值所在的位置 # 计算准确率 """cast()将correct_prediction列表变量中的值转换成float32 --> true=1.0,false=0.0 """ accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) # cast()相当于类型转换函数 with tf.Session() as sess: sess.run(init) for epoch in range(21): for batch in range(num_batch): batch_xs, batch_ys = mnist.train.next_batch(batch_size) sess.run(train_step, feed_dict={x: batch_xs, y: batch_ys}) acc = sess.run(accuracy, feed_dict={x: mnist.test.images, y: mnist.test.labels}) print('iter' + str(epoch) + ', testing accuracy:' + str(acc))