python--data.dropna
读取csv文件 data=pd.read_csv(“”)
1、删除全为空值的行或列
data=data.dropna(axis=0,how='all') #行
data=data.dropna(axis=1,how='all') #列
2、删除含有空值的行或列
data=data.dropna(axis=0,how='any') #行
data=data.dropna(axis=1,how='any') #列
1.创建带有缺失值的数据库:
import pandas as pd import numpy as np df = pd.DataFrame(np.random.randn(5, 3), index = list('abcde'), columns = ['one', 'two', 'three']) # 随机产生5行3列的数据 df.ix[1, :-1] = np.nan # 将指定数据定义为缺失 df.ix[1:-1, 2] = np.nan print(' df1') # 输出df1,然后换行 print(df)
查看数据内容:
2.通常情况下删除行,使用参数axis = 0,删除列的参数axis = 1,通常不会这么做,那样会删除一个变量。
print(' drop row') print(df.dropna(axis = 0))
删除后结果: