zoukankan      html  css  js  c++  java
  • caffe Python API 之可视化

    一、显示各层

    # params显示:layer名,w,b
    for layer_name, param in net.params.items():
        print layer_name + '	' + str(param[0].data.shape), str(param[1].data.shape)
    
    # blob显示:layer名,输出的blob维度
    for layer_name, blob in net.blobs.items():
        print layer_name + '	' + str(blob.data.shape)

    二、自定义函数:参数/卷积结果可视化

    import numpy as np
    import matplotlib.pyplot as plt
    import matplotlib.image as mpimg
    import caffe
    %matplotlib inline
    
    plt.rcParams['figure.figsize'] = (8, 8)
    plt.rcParams['image.interpolation'] = 'nearest'
    plt.rcParams['image.cmap'] = 'gray'
    
    def show_data(data, padsize=1, padval=0):
    """Take an array of shape (n, height, width) or (n, height, width, 3)
           and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
        # data归一化
        data -= data.min()
        data /= data.max()
        
        # 根据data中图片数量data.shape[0],计算最后输出时每行每列图片数n
        n = int(np.ceil(np.sqrt(data.shape[0])))
        # padding = ((图片个数维度的padding),(图片高的padding), (图片宽的padding), ....)
        padding = ((0, n ** 2 - data.shape[0]), (0, padsize), (0, padsize)) + ((0, 0),) * (data.ndim - 3)
        data = np.pad(data, padding, mode='constant', constant_values=(padval, padval))
        
        # 先将padding后的data分成n*n张图像
        data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
        # 再将(n, W, n, H)变换成(n*w, n*H)
        data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
        plt.figure()
        plt.imshow(data,cmap='gray')
        plt.axis('off')
    
    # 示例:显示第一个卷积层的输出数据和权值(filter)
    print net.blobs['conv1'].data[0].shape
    show_data(net.blobs['conv1'].data[0])
    print net.params['conv1'][0].data.shape
    show_data(net.params['conv1'][0].data.reshape(32*3,5,5))

    三、训练过程Loss&Accuracy可视化

    import matplotlib.pyplot as plt  
    import caffe   
    caffe.set_device(0)  
    caffe.set_mode_gpu()   
    # 使用SGDSolver,即随机梯度下降算法  
    solver = caffe.SGDSolver('/home/xxx/mnist/solver.prototxt')  
      
    # 等价于solver文件中的max_iter,即最大解算次数  
    niter = 10000 
    
    # 每隔100次收集一次loss数据  
    display= 100  
      
    # 每次测试进行100次解算 
    test_iter = 100
    
    # 每500次训练进行一次测试
    test_interval =500
      
    #初始化 
    train_loss = zeros(ceil(niter * 1.0 / display))   
    test_loss = zeros(ceil(niter * 1.0 / test_interval))  
    test_acc = zeros(ceil(niter * 1.0 / test_interval))  
      
    # 辅助变量  
    _train_loss = 0; _test_loss = 0; _accuracy = 0  
    # 进行解算  
    for it in range(niter):  
        # 进行一次解算  
        solver.step(1)  
        # 统计train loss  
        _train_loss += solver.net.blobs['SoftmaxWithLoss1'].data  
        if it % display == 0:  
            # 计算平均train loss  
            train_loss[it // display] = _train_loss / display  
            _train_loss = 0  
      
        if it % test_interval == 0:  
            for test_it in range(test_iter):  
                # 进行一次测试  
                solver.test_nets[0].forward()  
                # 计算test loss  
                _test_loss += solver.test_nets[0].blobs['SoftmaxWithLoss1'].data  
                # 计算test accuracy  
                _accuracy += solver.test_nets[0].blobs['Accuracy1'].data  
            # 计算平均test loss  
            test_loss[it / test_interval] = _test_loss / test_iter  
            # 计算平均test accuracy  
            test_acc[it / test_interval] = _accuracy / test_iter  
            _test_loss = 0  
            _accuracy = 0  
      
    # 绘制train loss、test loss和accuracy曲线  
    print '
    plot the train loss and test accuracy
    '  
    _, ax1 = plt.subplots()  
    ax2 = ax1.twinx()  
      
    # train loss -> 绿色  
    ax1.plot(display * arange(len(train_loss)), train_loss, 'g')  
    # test loss -> 黄色  
    ax1.plot(test_interval * arange(len(test_loss)), test_loss, 'y')  
    # test accuracy -> 红色  
    ax2.plot(test_interval * arange(len(test_acc)), test_acc, 'r')  
      
    ax1.set_xlabel('iteration')  
    ax1.set_ylabel('loss')  
    ax2.set_ylabel('accuracy')  
    plt.show()
  • 相关阅读:
    文件I/O(二)
    linux学习之文件I/O篇(一)
    静态库和共享库
    vim-ide
    CentOS6 vsftpd 安装及优化方法
    Redmine2.5+CentOS6+Apache2
    分享一个TP5实现Create()方法的心得
    Windows证书的生成导出以及使用证书验证文件是否被修改
    如何设置程序UAC控制
    关于C#的可变长参数
  • 原文地址:https://www.cnblogs.com/houjun/p/9912507.html
Copyright © 2011-2022 走看看