zoukankan      html  css  js  c++  java
  • Eigen教程(7)

    整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html

    归约、迭代器和广播

    归约

    在Eigen中,有些函数可以统计matrix/array的某类特征,返回一个标量。

    int main()
    {
      Eigen::Matrix2d mat;
      mat << 1, 2,
             3, 4;
      cout << "Here is mat.sum():       " << mat.sum()       << endl;
      cout << "Here is mat.prod():      " << mat.prod()      << endl;
      cout << "Here is mat.mean():      " << mat.mean()      << endl;
      cout << "Here is mat.minCoeff():  " << mat.minCoeff()  << endl;
      cout << "Here is mat.maxCoeff():  " << mat.maxCoeff()  << endl;
      cout << "Here is mat.trace():     " << mat.trace()     << endl;
    }
    

    范数计算

    L2范数 squareNorm(),等价于计算vector的自身点积,norm()返回squareNorm的开方根。

    这些操作应用于matrix,norm() 会返回Frobenius或Hilbert-Schmidt范数。

    如果你想使用其他Lp范数,可以使用lpNorm< p >()方法。p可以取Infinity,表示L∞范数。

    int main()
    {
      VectorXf v(2);
      MatrixXf m(2,2), n(2,2);
      
      v << -1,
           2;
      
      m << 1,-2,
           -3,4;
      cout << "v.squaredNorm() = " << v.squaredNorm() << endl;
      cout << "v.norm() = " << v.norm() << endl;
      cout << "v.lpNorm<1>() = " << v.lpNorm<1>() << endl;
      cout << "v.lpNorm<Infinity>() = " << v.lpNorm<Infinity>() << endl;
      cout << endl;
      cout << "m.squaredNorm() = " << m.squaredNorm() << endl;
      cout << "m.norm() = " << m.norm() << endl;
      cout << "m.lpNorm<1>() = " << m.lpNorm<1>() << endl;
      cout << "m.lpNorm<Infinity>() = " << m.lpNorm<Infinity>() << endl;
    }
    

    输出

    v.squaredNorm() = 5
    v.norm() = 2.23607
    v.lpNorm<1>() = 3
    v.lpNorm<Infinity>() = 2
    
    m.squaredNorm() = 30
    m.norm() = 5.47723
    m.lpNorm<1>() = 10
    m.lpNorm<Infinity>() = 4
    

    Operator norm: 1-norm和∞-norm可以通过其他方式得到。

    int main()
    {
      MatrixXf m(2,2);
      m << 1,-2,
           -3,4;
      cout << "1-norm(m)     = " << m.cwiseAbs().colwise().sum().maxCoeff()
           << " == "             << m.colwise().lpNorm<1>().maxCoeff() << endl;
      cout << "infty-norm(m) = " << m.cwiseAbs().rowwise().sum().maxCoeff()
           << " == "             << m.rowwise().lpNorm<1>().maxCoeff() << endl;
    }
    
    1-norm(m)     = 6 == 6
    infty-norm(m) = 7 == 7
    

    布尔归约

    all()=true matrix/array中的所有算术是true any()=true matrix/array中至少有一个元素是true count() 返回为true元素的数目

    #include <Eigen/Dense>
    #include <iostream>
    using namespace std;
    using namespace Eigen;
    int main()
    {
      ArrayXXf a(2,2);
      
      a << 1,2,
           3,4;
      cout << "(a > 0).all()   = " << (a > 0).all() << endl;
      cout << "(a > 0).any()   = " << (a > 0).any() << endl;
      cout << "(a > 0).count() = " << (a > 0).count() << endl;
      cout << endl;
      cout << "(a > 2).all()   = " << (a > 2).all() << endl;
      cout << "(a > 2).any()   = " << (a > 2).any() << endl;
      cout << "(a > 2).count() = " << (a > 2).count() << endl;
    }
    

    输出

    (a > 0).all()   = 1
    (a > 0).any()   = 1
    (a > 0).count() = 4
    
    (a > 2).all()   = 0
    (a > 2).any()   = 1
    (a > 2).count() = 2
    

    迭代器(遍历)

    当我们想获取某元素在Matrix或Array中的位置的时候,迭代器是必须的。常用的有:minCoeff和maxCoeff。

    int main()
    {
      Eigen::MatrixXf m(2,2);
      
      m << 1, 2,
           3, 4;
      //get location of maximum
      MatrixXf::Index maxRow, maxCol;
      float max = m.maxCoeff(&maxRow, &maxCol);
      //get location of minimum
      MatrixXf::Index minRow, minCol;
      float min = m.minCoeff(&minRow, &minCol);
      cout << "Max: " << max <<  ", at: " <<
         maxRow << "," << maxCol << endl;
      cout << "Min: " << min << ", at: " <<
         minRow << "," << minCol << endl;
    }
    
    Max: 4, at: 1,1
    Min: 1, at: 0,0
    

    部分归约

    Eigen中支持对Matrx或Array的行/行进行归约操作。部分归约可以使用colwise()/rowwise()函数。

    int main()
    {
      Eigen::MatrixXf mat(2,4);
      mat << 1, 2, 6, 9,
             3, 1, 7, 2;
      
      std::cout << "Column's maximum: " << std::endl
       << mat.colwise().maxCoeff() << std::endl;
    }
    
    Column's maximum: 
    3 2 7 9
    

    类似,针对行也可以,只是返回的是列向量而已。

    int main()
    {
      Eigen::MatrixXf mat(2,4);
      mat << 1, 2, 6, 9,
             3, 1, 7, 2;
      
      std::cout << "Row's maximum: " << std::endl
       << mat.rowwise().maxCoeff() << std::endl;
    }
    
    Row's maximum: 
    9
    7
    

    结合部分归约和其他操作

    例子:寻找和最大的列向量。

    int main()
    {
      MatrixXf mat(2,4);
      mat << 1, 2, 6, 9,
             3, 1, 7, 2;
      
      MatrixXf::Index   maxIndex;
      float maxNorm = mat.colwise().sum().maxCoeff(&maxIndex);
      
      std::cout << "Maximum sum at position " << maxIndex << std::endl;
      std::cout << "The corresponding vector is: " << std::endl;
      std::cout << mat.col( maxIndex ) << std::endl;
      std::cout << "And its sum is is: " << maxNorm << std::endl;
    }
    

    输出

    Maximum sum at position 2
    The corresponding vector is: 
    6
    7
    And its sum is is: 13
    

    广播

    广播是针对vector的,将vector沿行/列重复构建一个matrix,便于后期运算。

    int main()
    {
      Eigen::MatrixXf mat(2,4);
      Eigen::VectorXf v(2);
      
      mat << 1, 2, 6, 9,
             3, 1, 7, 2;
             
      v << 0,
           1;
           
      //add v to each column of m
      mat.colwise() += v;
      
      std::cout << "Broadcasting result: " << std::endl;
      std::cout << mat << std::endl;
    }
    

    输出

    Broadcasting result: 
    1 2 6 9
    4 2 8 3
    

    注意:对Array类型,*=,/=和/这些操作可以进行行/列级的操作,但不使用与Matrix,因为会与矩阵乘混淆。

    结合广播和其他操作

    示例:计算矩阵中哪列与目标向量距离最近。

    int main()
    {
      Eigen::MatrixXf m(2,4);
      Eigen::VectorXf v(2);
      
      m << 1, 23, 6, 9,
           3, 11, 7, 2;
           
      v << 2,
           3;
      MatrixXf::Index index;
      // find nearest neighbour
      (m.colwise() - v).colwise().squaredNorm().minCoeff(&index);
      cout << "Nearest neighbour is column " << index << ":" << endl;
      cout << m.col(index) << endl;
    }
    

    输出

    Nearest neighbour is column 0:
    1
    3
    
  • 相关阅读:
    一文了解Python中的判断语句
    想成为Python全栈开发工程师必须掌握的技能
    Python中变量的命名
    Python中变量的基本使用
    Java使用IO流读取TXT文件
    怎样用 I/O流读取txt文件?
    ORACLE数据库数据被修改或者删除恢复数据(闪回)
    字节流,读取 a.txt 文件内容,并打印出来
    使用js设置input标签只读 readonly 属性
    MyEclipse 选中属性或方法后 相同的不变色
  • 原文地址:https://www.cnblogs.com/houkai/p/6351609.html
Copyright © 2011-2022 走看看