Faiss处理固定维度d的数据,矩阵每一行表示一个向量,每列表示向量的一项。Faiss采用32-bit浮点型存储。
假设xb为数据集,维度为(nb imes{d});xq是查询数据,维度为(nq imes{d})
import numpy as np
d = 64 # dimension
nb = 100000 # database size
nq = 10000 # nb of queries
np.random.seed(1234) # make reproducible
xb = np.random.random((nb, d)).astype('float32')
xb[:, 0] += np.arange(nb) / 1000.
xq = np.random.random((nq, d)).astype('float32')
xq[:, 0] += np.arange(nq) / 1000.
为数据构建索引,Faiss包含非常多的索引类型,这里我们采用最简单的版本IndexFlatL2,基于L2距离进行brute-force搜索。
所有的索引的构建都需要知道它们操作数据的维度(d),其中大多索引需要一个训练过程,基于训练集来分析向量的分布。对IndexFlatL2,我们可以跳过训练。
索引创建后,add 和 search操作便可以基于索引来执行了。add 添加数据到索引(添加到xb)。
我们可以查看索引的属性状态,is_trained是否训练完成(有些不需要训练),ntotal被索引数据的数目。
有一些索引,需要提供向量的整数ID,如果ID没有提供,add可以采用数据的序号数,第一个数据为0,第二个是1,以此类推。
import faiss # make faiss available
index = faiss.IndexFlatL2(d) # build the index
print(index.is_trained)
index.add(xb) # add vectors to the index
print(index.ntotal)
# output
True
100000
基于索引便可以进行k近邻查询了,结果矩阵为(nq imes{k}),第i行表示第i个查询向量,每行包含k个最近邻的ID,距离依次递增。同时返回相同维度的距离矩阵。
k = 4 # we want to see 4 nearest neighbors
D, I = index.search(xb[:5], k) # sanity check
print(I)
print(D)
D, I = index.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:]) # neighbors of the 5 last queries
# output
[[ 0 393 363 78]
[ 1 555 277 364]
[ 2 304 101 13]
[ 3 173 18 182]
[ 4 288 370 531]]
[[ 0. 7.17517328 7.2076292 7.25116253]
[ 0. 6.32356453 6.6845808 6.79994535]
[ 0. 5.79640865 6.39173603 7.28151226]
[ 0. 7.27790546 7.52798653 7.66284657]
[ 0. 6.76380348 7.29512024 7.36881447]]
[[ 381 207 210 477]
[ 526 911 142 72]
[ 838 527 1290 425]
[ 196 184 164 359]
[ 526 377 120 425]]
[[ 9900 10500 9309 9831]
[11055 10895 10812 11321]
[11353 11103 10164 9787]
[10571 10664 10632 9638]
[ 9628 9554 10036 9582]]
受向量第一项的影响,查询数据中头部数据的最近邻也在数据集的头部。
加速查询,首先可以把数据集切分成多个,我们定义Voronoi Cells,每个数据向量只能落在一个cell中。查询时只需要查询query向量落在cell中的数据了,降低了距离计算次数。
通过IndexIVFFlat索引,可以实现上面的思想,它需要一个训练的阶段。IndexIVFFlat需要另一个索引,称为quantizer,来判断向量属于哪个cell。
search方法也相应引入了nlist(cell的数目)和nprobe(执行搜索的cell数)
nlist = 100
k = 4
quantizer = faiss.IndexFlatL2(d) # the other index
index = faiss.IndexIVFFlat(quantizer, d, nlist, faiss.METRIC_L2)
# here we specify METRIC_L2, by default it performs inner-product search
assert not index.is_trained
index.train(xb)
assert index.is_trained
index.add(xb) # add may be a bit slower as well
D, I = index.search(xq, k) # actual search
print(I[-5:]) # neighbors of the 5 last queries
index.nprobe = 10 # default nprobe is 1, try a few more
D, I = index.search(xq, k)
print(I[-5:]) # neighbors of the 5 last queries
# output
[[ 9900 10500 9831 10808]
[11055 10812 11321 10260]
[11353 10164 10719 11013]
[10571 10203 10793 10952]
[ 9582 10304 9622 9229]]
[[ 9900 10500 9309 9831]
[11055 10895 10812 11321]
[11353 11103 10164 9787]
[10571 10664 10632 9638]
[ 9628 9554 10036 9582]]
结果并不完全一致,因为落在Voronoi cell外的数据也可能离查询数据更近。适当增加nprobe可以得到和brute-force相同的结果,nprobe控制了速度和精度的平衡。
IndexFlatL2 和 IndexIVFFlat都要存储所有的向量数据,这对于大型数据集是不现实的。Faiss基于PQ提供了变体IndexIVFPQ来压缩数据向量(一定的精度损耗)。
向量仍是存储在Voronoi cells中,但是它们的大小可以通过m来设置(m是d的因子)。
由于向量值不在准确存储,所以search计算的距离也是近似的了。
nlist = 100
m = 8 # number of bytes per vector
k = 4
quantizer = faiss.IndexFlatL2(d) # this remains the same
index = faiss.IndexIVFPQ(quantizer, d, nlist, m, 8)
# 8 specifies that each sub-vector is encoded as 8 bits
index.train(xb)
index.add(xb)
D, I = index.search(xb[:5], k) # sanity check
print(I)
print(D)
index.nprobe = 10 # make comparable with experiment above
D, I = index.search(xq, k) # search
print(I[-5:])
# output
[[ 0 424 363 278]
[ 1 555 1063 24]
[ 2 304 46 346]
[ 3 773 182 1529]
[ 4 288 754 531]]
[[ 1.45568264 6.03136778 6.18729019 6.38852692]
[ 1.4934082 5.74254704 6.19941282 6.21501732]
[ 1.60279942 6.20174742 6.32792568 6.78541422]
[ 1.69804895 6.2623148 6.26956797 6.56042767]
[ 1.30235791 6.13624859 6.33899879 6.51442146]]
[[10664 10914 9922 9380]
[10260 9014 9458 10310]
[11291 9380 11103 10392]
[10856 10284 9638 11276]
[10304 9327 10152 9229]]
最近距离(到自身)不再是0了,因为数据被压缩了。整理64位 32-bits向量,被分割为8份,每份用8bits表示,所以压缩因子为32。
查询数据集的结果和IVFFlat对比,大多是错误的,但是它们都在10000左右。这种策略在实际数据中是更好的:
- 均匀分布的数据是很难索引的,它们很难聚类和降维
- 自然数据,相似数据比不相干数据的距离要显著的更小。
使用工厂方法简化索引构建
index = faiss.index_factory(d, "IVF100,PQ8")
PQ8替换为Flat便得到了IndexFlat索引,工厂方法是非常有效的,尤其是对数据采用预处理的时候,如参数"PCA32,IVF100,Flat",表示通过PCA把向量减低到32维。
Faiss可以基本无缝地在GPU上运行,首先申请GPU资源,并包括足够的显存空间。
res = faiss.StandardGpuResources() # use a single GPU
使用GPU创建索引
# build a flat (CPU) index
index_flat = faiss.IndexFlatL2(d)
# make it into a gpu index
gpu_index_flat = faiss.index_cpu_to_gpu(res, 0, index_flat)
索引的使用和CPU上类似
gpu_index_flat.add(xb) # add vectors to the index
print(gpu_index_flat.ntotal)
k = 4 # we want to see 4 nearest neighbors
D, I = gpu_index_flat.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:]) # neighbors of the 5 last queries
使用多张GPU卡
ngpus = faiss.get_num_gpus()
print("number of GPUs:", ngpus)
cpu_index = faiss.IndexFlatL2(d)
gpu_index = faiss.index_cpu_to_all_gpus( # build the index
cpu_index
)
gpu_index.add(xb) # add vectors to the index
print(gpu_index.ntotal)
k = 4 # we want to see 4 nearest neighbors
D, I = gpu_index.search(xq, k) # actual search
print(I[:5]) # neighbors of the 5 first queries
print(I[-5:]) # neighbors of the 5 last queries