hdfs优化
https://www.cnblogs.com/yinzhengjie/p/10006880.html
spark优化
https://blog.csdn.net/u012102306/article/details/51637366
MIN_CONTAINER_SIZE = 2048 MB
containers = min (2*CORES, 1.8*DISKS, (Total available RAM) / MIN_CONTAINER_SIZE)
# of containers = min (2*12, 1.8*16, (60 * 1024) / 2048)
# of containers = min (24,29,39)
# of containers = 24
RAM-per-container = max(MIN_CONTAINER_SIZE, (Total Available RAM) / containers))
RAM-per-container = max(2048, (60 * 1024) / 24))
RAM-per-container = 2560 MB
yarn配置:
yarn.nodemanager.resource.memory-mb = containers * RAM-per-container 24*2560=61,440m
yarn.scheduler.minimum-allocation-mb = RAM-per-container 2560m
yarn.scheduler.maximum-allocation-mb = containers * RAM-per-container 24*2560=61,440m
mapreduce.map.memory.mb = RAM-per-container 2560m
mapreduce.reduce.memory.mb = 2 * RAM-per-container 5,120m
mapreduce.map.java.opts = 0.8 * RAM-per-container 2,048m
mapreduce.reduce.java.opts = 0.8 * 2 * RAM-per-container 4,096m
yarn.nodemanager.resource.memory-mb = 22 * 2560 MB 56,320m
yarn.scheduler.minimum-allocation-mb = 2560 MB
yarn.scheduler.maximum-allocation-mb = 22 * 2560 MB 56,320m
mapreduce.map.memory.mb = 2560 MB
mapreduce.reduce.memory.mb = 22 * 2560 MB 56,320m
mapreduce.map.java.opts = 0.8 * 2560 MB 4,096m
mapreduce.reduce.java.opts = 0.8 * 2 * 2560 MB 4,096m