zoukankan      html  css  js  c++  java
  • PAT Advanced 1115 Counting Nodes in a BST (30) [⼆叉树的遍历,BFS,DFS]

    题目

    A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties: The lef subtree of a node contains only nodes with keys less than or equal to the node’s key. The right subtree of a node contains only nodes with keys greater than the node’s key. Both the lef and right subtrees must also be binary search trees. Insert a sequence of numbers into an initially empty binary search tree. Then you are supposed to count the total number of nodes in the lowest 2 levels of the resulting tree.
    Input Specification:
    Each input file contains one test case. For each case, the first line gives a positive integer N (<=1000) which is the size of the input sequence. Then given in the next line are the N integers in [-1000 1000] which are supposed to be inserted into an initially empty binary search tree.
    Output Specification:
    For each case, print in one line the numbers of nodes in the lowest 2 levels of the resulting tree in the format:
    n1 + n2 = n
    where n1 is the number of nodes in the lowest level, n2 is that of the level above, and n is the sum.
    Sample Input:
    9
    25 30 42 16 20 20 35 -5 28
    Sample Output:
    2 + 4 = 6

    题目分析

    已知一棵二叉查找树的建树序列,求二叉查找树最后两层的结点数

    解题思路

    思路 01

    1. 建树(非递归)
    2. 统计每层结点数:bfs深度优先遍历,记录每层结点数和最大层数

    思路 02

    1. 建树(递归)
    2. dfs广度优先遍历,记录每层结点数和最大层数

    Code

    Code 01

    #include <iostream>
    #include <queue>
    using namespace std;
    const int maxn=1000;
    struct node {
    	int data;
    	int h=0;
    	node * left=NULL;
    	node * right=NULL;
    	node() {
    	}
    	node(int _data, int _h) {
    		data = _data;
    		h=_h;
    	}
    };
    node * root;
    int h[maxn],lcn[maxn],max_h;
    void insert(int n) {
    	if(root==NULL) {
    		root=new node(n,1);
    		return;
    	}
    	node * p=root;
    	while(p!=NULL) {
    		if(p->data<n) {
    			if(p->right==NULL){
    				p->right=new node(n,p->h+1);
    				return;
    			}
    			else p=p->right;
    		} else {
    			if(p->left==NULL){
    				p->left=new node(n,p->h+1);
    				return;
    			}
    			else p=p->left;
    		}
    	}
    }
    void bfs() {
    	queue <node *> q;
    	q.push(root);
    	while(!q.empty()) {
    		node * now = q.front();
    		q.pop();
    		max_h=max(max_h,now->h);
    		lcn[now->h]++; 
    		if(now->left!=NULL)q.push(now->left);
    		if(now->right!=NULL)q.push(now->right);
    	}
    }
    int main(int argc,char * argv[]) {
    	int n,rn;
    	scanf("%d",&n);
    	for(int i=0; i<n; i++) {
    		scanf("%d",&rn);
    		insert(rn);
    	}
    	bfs();
    	//根节点高度为1,高度0作为哨兵
    	printf("%d + %d = %d", lcn[max_h], lcn[max_h-1], lcn[max_h]+lcn[max_h-1]); 
    	return 0;
    }
    

    Code 02

    #include <iostream>
    #include <queue>
    using namespace std;
    const int maxn=1000;
    struct node {
    	int data;
    	int h=0;
    	node * left=NULL;
    	node * right=NULL;
    	node() {
    	}
    	node(int _data, int _h) {
    		data = _data;
    		h=_h;
    	}
    };
    node * root;
    int h[maxn],lcn[maxn],max_h;
    void insert(node* &root, int data, int dep) { //注意root前要加引用,才能更新前驱结点的后继指针
        if(root == NULL) {      //到达空结点时,即为需要插入的位置
            root = new node(data,dep);
            root->data = data;
            root->left = root->right = NULL;    //此句不能漏
            return;
        }
        if(data <= root->data) insert(root->left, data, root->h+1);     //插在左子树
        else insert(root->right, data, root->h+1);     //插在右子树
    }
    void dfs(node * now, int h){
    	if(now==NULL){
    		return;
    	}
    	max_h=max(max_h,h);
    	lcn[h]++;
    	if(now->left!=NULL)dfs(now->left, h+1);
    	if(now->right!=NULL)dfs(now->right, h+1);
    }
    int main(int argc,char * argv[]) {
    	int n,rn;
    	scanf("%d",&n);
    	for(int i=0; i<n; i++) {
    		scanf("%d",&rn);
    		insert(root,rn, 1);
    	}
    	dfs(root,1);
    	//根节点高度为1,高度0作为哨兵 
    	printf("%d + %d = %d", lcn[max_h], lcn[max_h-1], lcn[max_h]+lcn[max_h-1]); 
    	return 0;
    }
    

    Code 03

    #include <iostream>
    using namespace std;
    /*
    	计算二叉查找树最下两层的结点数
    	1. 建树
    	2. dfs bfs 统计每层结点数
    */
    const int maxn = 1100;
    const int inf = 0x7fffffff;
    int maxh,levs[maxn];
    struct node {
    	int d,h;
    	node * l;
    	node * r;
    	node() {}
    	node(int _d,int _h):d(_d),h(_h),l(NULL),r(NULL) {}
    };
    node * root;
    void insert(int v,node* now) {
    	if(root==NULL) {
    		root=new node(v,0);
    		return;
    	}
    	if(v<=now->d) {
    		if(now->l==NULL) {
    			now->l=new node(v,now->h+1);
    			return;
    		}
    		insert(v,now->l);
    	} else {
    		if(now->r==NULL) {
    			now->r=new node(v,now->h+1);
    			return;
    		}
    		insert(v,now->r);
    	}
    }
    
    void cnt_levs(node * v) {
    	if(v==NULL)return;
    	levs[v->h]++;
    	if(maxh<v->h)maxh=v->h;
    	if(v->l!=NULL)cnt_levs(v->l);
    //	printf("%d ",v->d);
    	if(v->r!=NULL)cnt_levs(v->r);
    }
    int main(int argc,char * argv[]) {
    	int n,m;
    	scanf("%d",&n);
    	for(int i=1; i<=n; i++) {
    		scanf("%d",&m);
    		insert(m,root);
    	}
    	cnt_levs(root);
    	printf("%d + %d = %d",levs[maxh],levs[maxh-1],levs[maxh-1]+levs[maxh]);
    	return 0;
    }
    
  • 相关阅读:
    动态加载js文件并且执行回调方法
    二分查找法查找数组元素下表
    用横线隔开字符串
    不要再拖别人的控件2.帮前面的东东加个事件
    IE6 外部样式引用不进来
    用jQuery+css+div 写一个 乱换效果
    不要再拖别人的控件3.为什么要学习.net控件开发
    带一键还原的FTP上传软件
    .net 四舍六入 五成双
    Fiddler实战之请求头(request headers)和响应头(response headers)
  • 原文地址:https://www.cnblogs.com/houzm/p/12329393.html
Copyright © 2011-2022 走看看