zoukankan      html  css  js  c++  java
  • PAT Advanced 1066 Root of AVL Tree (25) [平衡⼆叉树(AVL树)]

    题目

    An AVL tree is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node difer by at most one; if at any time they difer by more than one, rebalancing is done to restore this property. Figures 1-4 illustrate the rotation rules.
    Now given a sequence of insertions, you are supposed to tell the root of the resulting AVL tree.
    Input Specification:
    Each input file contains one test case. For each case, the first line contains a positive integer N (≤20) which is the total number of keys to be inserted. Then N distinct integer keys are given in the next line. All the numbers in a line are separated by a space.
    Output Specification:
    For each test case, print the root of the resulting AVL tree in one line.
    Sample Input 1:
    5
    88 70 61 96 120
    Sample Output 1:
    70
    Sample Input 2:
    7
    88 70 61 96 120 90 65
    Sample Output 2:
    88

    题目分析

    已知平衡二叉树建树序列,求建树后的根节点

    解题思路

    1.建树(平衡二叉树insert节点)
    2.打印根节点

    易错点

    左旋、右旋、插入节点方法,参数列表中要用指针引用node *&root,否则是值传递,方法中对root本身的修改不会在main函数中生效

    Code

    #include <iostream>
    using namespace std;
    struct node {
    	int data;
    	int heigh=0;
    	node * left=NULL;
    	node * right=NULL;
    	node() {}
    	node(int _data):data(_data) {
    		heigh=1;
    	}
    };
    int getHeigh(node * root) {
    	if(root==NULL)return 0;
    	return root->heigh;
    }
    void updateHeigh(node * root) {
    	root->heigh=max(getHeigh(root->left),getHeigh(root->right))+1;
    }
    void L(node * &root) {
    	//左旋
    	node * temp=root->right;
    	root->right=temp->left;
    	temp->left=root;
    	updateHeigh(root);
    	updateHeigh(temp);
    	root=temp;
    }
    void R(node * &root) {
    	//右旋
    	node * temp=root->left;
    	root->left=temp->right;
    	temp->right=root;
    	updateHeigh(root);
    	updateHeigh(temp);
    	root=temp;
    }
    int getBalanceFactor(node *root) {
    	return getHeigh(root->left)-getHeigh(root->right);
    }
    void insert(node * &root, int val) {
    	if(root==NULL) {
    		root=new node(val);
    		return;
    	}
    	if(val<root->data) {
    		insert(root->left,val);
    		updateHeigh(root);
    		if(getBalanceFactor(root)==2) {
    			if(getBalanceFactor(root->left)==1) {
    				//LL
    				R(root);
    			} else if(getBalanceFactor(root->left)==-1) {
    				//LR
    				L(root->left);
    				R(root);
    			}
    		}
    	} else {
    		insert(root->right,val);
    		updateHeigh(root);
    		if(getBalanceFactor(root)==-2) {
    			if(getBalanceFactor(root->right)==-1) {
    				//RR
    				L(root);
    			} else if(getBalanceFactor(root->right)==1) {
    				//RL
    				R(root->right);
    				L(root);
    			}
    		}
    	}
    }
    int main(int argc,char * argv[]) {
    	int n,m;
    	scanf("%d",&n);
    	node * root=NULL;
    	for(int i=0; i<n; i++) {
    		scanf("%d",&m);
    		insert(root,m);
    	}
    	printf("%d",root->data);
    	return 0;
    }
    
  • 相关阅读:
    字符串形式导入模块
    pycharm 远程环境开发调试
    ubuntu 18.04 及初始化python3环境
    nbu备份虚拟机
    转载
    linux/centos/rhel同时安装oracle10g和11g
    多进程
    drf笔记
    单例模式
    常用模块
  • 原文地址:https://www.cnblogs.com/houzm/p/12340293.html
Copyright © 2011-2022 走看看