zoukankan      html  css  js  c++  java
  • PAT Advanced 1147 Heaps (30) [堆,树的遍历]

    题目

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_ (data_structure))
    Your job is to tell if a given complete binary tree is a heap.
    Input Specification:
    Each input file contains one test case. For each case, the first line gives two positive integers: M (<= 100), the number of trees to be tested; and N (1 < N <= 1000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
    Output Specification:
    For each given tree, print in a line “Max Heap” if it is a max heap, or “Min Heap” for a min heap, or “Not Heap” if it is not a heap at all. Then in the next line print the trees postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
    Sample Input:
    3 8
    98 72 86 60 65 12 23 50
    8 38 25 58 52 82 70 60
    10 28 15 12 34 9 8 56
    Sample Output:
    Max Heap
    50 60 65 72 12 23 86 98
    Min Heap
    60 58 52 38 82 70 25 8
    Not Heap
    56 12 34 28 9 8 15 10

    题目分析

    已知完全二叉树的层序序列,求其为大顶堆还是小顶堆或者不是堆,并输出后序序列

    解题思路

    1. 递归判断每个节点的左右子节点是否都大于等于自己(小顶堆),或者都小于等于自己(大顶堆)
    2. 利用完全二叉树层序序列,递归进行后序序列输出

    Code

    Code 01

    #include <iostream>
    #include <vector>
    using namespace std;
    vector<int> nds;
    int n;
    bool isMaxHeap(int index) {
    	int left = 2*index+1;
    	int right = 2*index+2;
    	if(left>=n&&right>=n)return true; //叶子节点,返回true 
    	if(left<n&&nds[left]>nds[index])return false; //左子节点大于当前节点 
    	if(right<n&&nds[right]>nds[index])return false; //右子节点大于当前节点
    	return isMaxHeap(left)&&isMaxHeap(right);
    }
    bool isMinHeap(int index) {
    	int left = 2*index+1;
    	int right = 2*index+2;
    	if(left>=n&&right>=n)return true; //叶子节点,返回true 
    	if(left<n&&nds[left]<nds[index])return false; //左子节点小于当前节点 
    	if(right<n&&nds[right]<nds[index])return false; //右子节点小于当前节点
    	return isMinHeap(left)&&isMinHeap(right);
    }
    void post(int index){
    	if(index>=n)return;
    	post(index*2+1);
    	post(index*2+2);
    	printf("%d%s",nds[index],index==0?"
    ":" ");//后序遍历,根最后输出 
    }
    int main(int argc,char * argv[]) {
    	int m;
    	scanf("%d %d",&m,&n);
    	for(int i=0; i<m; i++) {
    		nds.clear();
    		nds.resize(n);
    		for(int j=0; j<n; j++) {
    			scanf("%d", &nds[j]);
    		}
    		if(isMaxHeap(0)) {
    			printf("Max Heap
    ");
    		} else if(isMinHeap(0)) {
    			printf("Min Heap
    ");
    		} else {
    			printf("Not Heap
    ");
    		}
    		post(0); 
    	}
    
    	return 0;
    }
    

    Code 02

    #include <iostream>
    #include <vector>
    using namespace std;
    int m, n;
    vector<int> v;
    void postOrder(int index) {
    	if (index >= n) return;
    	postOrder(index * 2 + 1);
    	postOrder(index * 2 + 2);
    	printf("%d%s", v[index], index == 0 ? "
    " : " ");
    }
    int main() {
    	scanf("%d%d", &m, &n);
    	v.resize(n);
    	for (int i = 0; i < m; i++) {
    		for (int j = 0; j < n; j++) scanf("%d", &v[j]);
    		int flag = v[0] > v[1] ? 1 : -1;
    		for (int j = 0; j <= (n-1) / 2; j++) {
    			int left = j * 2 + 1, right = j * 2 + 2;
    			if (flag == 1 && (v[j] < v[left] || (right < n && v[j] < v[right]))) flag = 0;
    			if (flag == -1 && (v[j] > v[left] || (right < n && v[j] > v[right]))) flag = 0;
    		}
    		if (flag == 0) printf("Not Heap
    ");
    		else printf("%s Heap
    ", flag == 1 ? "Max" : "Min");
    		postOrder(0);
    	}
    	return 0;
    }
    
  • 相关阅读:
    自制的 MPlayer Skin
    mplayer filter 参数及效果
    可拖动的层DIV的完整源代码【转】
    Hibernate的检索方式(一)【转】
    HQL经典语句
    常适用的特效网页代码
    C#优化字符串操作【转】
    Hibernate的检索方式(二)【转】
    内联inline的使用方法【转】
    Hibernate的检索方式(三)【转】
  • 原文地址:https://www.cnblogs.com/houzm/p/12341794.html
Copyright © 2011-2022 走看看