zoukankan      html  css  js  c++  java
  • PAT Advanced 1155 Heap Paths (30) [DFS, 深搜回溯,堆]

    题目

    In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_ (data_structure)) One thing for sure is that all the keys along any path from the root to a leaf in a max/min heap must be in non-increasing/non-decreasing order.
    Your job is to check every path in a given complete binary tree, in order to tell if it is a heap or not.
    Input Specification:
    Each input file contains one test case. For each case, the first line gives a positive integer N (1<N≤1,000), the number of keys in the tree. Then the next line contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
    Output Specification:
    For each given tree, first print all the paths from the root to the leaves. Each path occupies a line, with all the numbers separated by a space, and no extra space at the beginning or the end of the line. The paths must be printed in the following order: for each node in the tree, all the paths in its right subtree must be printed before those in its lef subtree.
    Finally print in a line Max Heap if it is a max heap, or Min Heap for a min heap, or Not Heap if it is not a heap at all.
    Sample Input 1:
    8
    98 72 86 60 65 12 23 50
    Sample Output 1:
    98 86 23
    98 86 12
    98 72 65
    98 72 60 50
    Max Heap
    Sample Input 2:
    8
    8 38 25 58 52 82 70 60
    Sample Output 2:
    8 25 70
    8 25 82
    8 38 52
    8 38 58 60
    Min Heap
    Sample Input 3:
    8
    10 28 15 12 34 9 8 56
    Sample Output 3:
    10 15 8
    10 15 9
    10 28 34
    10 28 12 56
    Not Heap

    题目分析

    已知完全二叉树层序序列,打印所有路径(从根节点到叶子节点)并判断是否为堆,为大顶堆还是小顶堆

    解题思路

    1. 打印路径
      思路01:dfs深度优先遍历,用整型数组path[n]记录路径进行回溯
      思路02:dfs深度优先遍历,用vector vin链表记录路径进行回溯
    2. 判断是否为堆,为大顶堆还是小顶堆
      思路01:递归判断,用父节点与其左右子节点进行比较判断
      思路02:for循环,用所有子节点与其父节点进行比较判断

    Code

    Code 01

    #include <iostream>
    using namespace std;
    /*
    	利用数组回溯 
    */
    int level[1001],path[1001];
    int n;
    void printPath(int pin) {
    	for(int i=0; i<=pin; i++) {
    		printf("%d",path[i]);
    		printf("%s",i==pin?"
    ":" ");
    	}
    }
    void dfs(int vin, int pin) {
    	path[pin]=level[vin];
    	if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
    		printPath(pin);
    		return;
    	} else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL 
    		path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出 
    		printPath(pin+1);
    		return;
    	} else {
    		dfs(2*vin+2,pin+1);
    		dfs(2*vin+1,pin+1);
    	}
    }
    bool isMaxHeap(int vin) {
    	if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
    	if(2*vin+1<n&&level[2*vin+1]>level[vin])return false;
    	if(2*vin+2<n&&level[2*vin+2]>level[vin])return false;
    	return isMaxHeap(2*vin+1)&&isMaxHeap(2*vin+2);
    }
    bool isMinHeap(int vin) {
    	if(2*vin+1>=n)return true; //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
    	if(2*vin+1<n&&level[2*vin+1]<level[vin])return false;
    	if(2*vin+2<n&&level[2*vin+2]<level[vin])return false;
    	return isMinHeap(2*vin+1)&&isMinHeap(2*vin+2);
    }
    int main(int argc,char * argv[]) {
    	scanf("%d",&n);
    	for(int i=0; i<n; i++) {
    		scanf("%d",&level[i]);
    	}
    	dfs(0,0);
    	if(isMaxHeap(0)) {
    		printf("Max Heap
    ");
    	} else if(isMinHeap(0)) {
    		printf("Min Heap
    ");
    	} else {
    		printf("Not Heap
    ");
    	}
    	return 0;
    }
    

    Code 02

    #include <iostream>
    #include <vector>
    using namespace std;
    /*
    	利用链表回溯
    */
    int level[1001];
    vector<int> path;
    int n,isMax=1,isMin=1;
    void printPath() {
    	for(int i=0; i<path.size(); i++) {
    		printf("%d",path[i]);
    		printf("%s",i==pin?"
    ":" ");
    	}
    }
    void dfs(int vin) {
    	if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
    		printPath(); 
    	} else if(2*vin+2>=n) {//左子节点非NULL 右子节点为NULL
    		path.push_back(level[2*vin+1]); 
    		printPath();
    		path.pop_back();
    	} else {
    		path.push_back(level[2*vin+2]); 
    		dfs(2*vin+2);
    		path.pop_back();
    		path.push_back(level[2*vin+1]); 
    		dfs(2*vin+1);
    		path.pop_back();
    	}
    }
    int main(int argc,char * argv[]) {
    	scanf("%d",&n);
    	for(int i=0; i<n; i++) {
    		scanf("%d",&level[i]);
    	}
    	path.push_back(level[0]); 
    	dfs(0);
    	for(int i=1;i<n;i++){
    		if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i] 
    		if(level[(i-1)/2]<level[i])isMax=0;
    	}
    	if(isMax==1) {
    		printf("Max Heap
    ");
    	} else if(isMin==1) {
    		printf("Min Heap
    ");
    	} else {
    		printf("Not Heap
    ");
    	}
    	return 0;
    }
    

    Code 03

    #include <iostream>
    using namespace std;
    /*
    	利用数组回溯 
    */
    int level[1001],path[1001];
    int n,isMax=1,isMin=1;
    void printPath(int pin) {
    	for(int i=0; i<=pin; i++) {
    		printf("%d",path[i]);
    		printf("%s",i==pin?"
    ":" ");
    	}
    }
    void dfs(int vin, int pin) {
    	path[pin]=level[vin];
    	if(2*vin+1>=n) { //左右子节点都为NULL 2*vin+1>=n则一定2*vin+2>=n
    		printPath(pin);
    		return;
    	} else if(2*vin+2>=n) { //左子节点非NULL 右子节点为NULL 
    		path[pin+1]=level[2*vin+1]; //添加左子节点后 打印退出 
    		printPath(pin+1);
    		return;
    	} else {
    		dfs(2*vin+2,pin+1);
    		dfs(2*vin+1,pin+1);
    	}
    }
    int main(int argc,char * argv[]) {
    	scanf("%d",&n);
    	for(int i=0; i<n; i++) {
    		scanf("%d",&level[i]);
    	}
    	dfs(0,0);
    	for(int i=1;i<n;i++){
    		if(level[(i-1)/2]>level[i])isMin=0; //如果i是从1存储的,这里应该是level[i/2]>level[i] 
    		if(level[(i-1)/2]<level[i])isMax=0;
    	}
    	if(isMax==1) {
    		printf("Max Heap
    ");
    	} else if(isMin==1) {
    		printf("Min Heap
    ");
    	} else {
    		printf("Not Heap
    ");
    	}
    	return 0;
    }
    
  • 相关阅读:
    ionic 白名单
    简单的apk Ionic
    Ionic 小节
    Ionic学习笔记四 一些问题处理
    Android Platform Guide
    Android各个版本 版本号对应关系表
    JBPM4.4_管理流程定义
    JBPM4.4_核心概念与相关API
    工作流JBPM_day01:3-使用JBPM的API添加与执行流程
    工作流JBPM_day01:2-HelloWorld
  • 原文地址:https://www.cnblogs.com/houzm/p/12344810.html
Copyright © 2011-2022 走看看