zoukankan      html  css  js  c++  java
  • TSNE/分析两个数据的分布

    使用sklearn.manifold的函数TSNE

    #coding=utf-8
    
    import numpy as np
    import picklefrom sklearn.manifold import TSNE
    import matplotlib
    matplotlib.use('Agg')
    import matplotlib.pyplot as plt 
    #数据集装载函数
    def load_data(fname):
        with open(fname, 'rb') as fr: 
            ret = pickle.load(fr)
        return ret 
    
    def plot(data1, label1, data2, label2):
        X_pca1 = TSNE().fit_transform(data1)
        X_pca2 = TSNE().fit_transform(data2)
        plt.figure(figsize=(10, 5)) 
        ax1 = plt.subplot(121)
        ax1.scatter(X_pca1[:, 0], X_pca1[:, 1], c=label1)
        ax1.set_title("data1 train data")
        plt.savefig('a1.png')
        #plt.show()
        ax2 = plt.subplot(122)
        ax2.scatter(X_pca2[:, 0], X_pca2[:, 1], c=label2)
        ax2.set_title("data2 train data")
        plt.savefig('b1.png')
        #plt.show()
    
    def main():
        #装载训练数据
        
        train_data1, train_label1 = load_data('/home/hd_1T/haiou/class/machinelearning/data/data1/test_data.pkl')
        train_data2, train_label2 = load_data('/home/hd_1T/haiou/class/machinelearning/data/data2/test_data.pkl')
        plot(train_data1.reshape((train_data1.shape[0], train_data1.shape[1]*train_data1.shape[2])), train_label1,train_data2.reshape((train_data2.shape[0], train_data2.shape[1]*train_data1.shape[2])), train_label2)
  • 相关阅读:
    Python和C#基本算法实现对比
    数据库并发
    NetCore 启动地址配置详解
    SkyWalking Liunx 环境搭建&NetCore接入
    Autofac踩坑经历
    centos 7 安装elasticsearch
    centos 7 java1.8安装
    AppDomin学习与分享
    .Net 程序代码混淆加密工具 ILProtector
    c# 重新认识 Double 浮点型
  • 原文地址:https://www.cnblogs.com/hozhangel/p/11101524.html
Copyright © 2011-2022 走看看