zoukankan      html  css  js  c++  java
  • NotesMITLinearAlgebra

    3.乘法和逆矩阵

    I.Different Views of Matrix Multiplication.

    1.Defination

    A* B

    a11   a12    a13    a14               

    a21   a22 .................

    ..................................      *   

    .............................a44

    A: m * n, B: n * p

    Cij= SUM(Aik*Bkj), k -> [1,n];

    2.matrix A * column vector collection of B.

    matix* several column vector , the corresponding 

    3.row vector collections of A * matrix B.

    severalrow vector * matrix.

    4.column of A * row of B

    m*1* 1*p

    A*B= sum ( columns of A * rows of B )

    5.BLOCK

    [A11,A12]    * [ B11, B12 ]    = [ A11*B11 + A12*B21,A11*B12+A12*B22 ]

    [A21,A22]       [ B21, B22 ]      [ A21*B11+ A22*B22, A21*B12+A22*B22 ]

    II. INVERSE

    Ifthere exists A' of A . that A' * A = I ( we call it invertible,non-singular.) , the A' is the inverse of A.

    andif A is a square matrix A'*A = I = A*A';

     

    SINGULAR case , non-invertible.

    [ 1 3 ; 2 6 ];

    1.           the linear combination of columns of A. and all lies on (1,2) socant combine(1,0)

    2.           there is a lema? say that Ax = 0 and x != 0. then A has noinverse.

    Intuition , that says that some/all columns of Acould form zero vector. So that they are linear dependent ? means lies onthe same direction.

    Sothere will get no A' in this case.

    For NON-Singular case

    Howcan we get the inverse of A?

    Gauss- Jordan ( solve 2 equations at once )

    13

    27* [ a ; b ] = [ 1 ; 0 ]

    13

    27 * [ c; d ] = [ 0 ; 1 ]

    andhow can we solve it , use following ideas.

    AI --> I A-1

    look more detail for 3.乘法和逆矩阵.mp4later.





  • 相关阅读:
    ES6 Promise 用法转载
    移动端滚动性能优化
    Python之禅
    Day01~15
    Python
    第一章 Java起源
    IMP-00009: 导出文件异常结束 imp
    浏览器访问网页的详细内部过程
    数据库连接池
    连接数据库 六大步骤
  • 原文地址:https://www.cnblogs.com/hphp/p/3617012.html
Copyright © 2011-2022 走看看