比赛的时候没搞定怎么维护gcd求和的问题,赛后看了题解也感觉不是很懂,问了逊神,一句话提示了我:区间gcd就是一个序列而已!!!然后我就知道自己是个傻逼了。区间维护,很容易想到用一个RMQ搞定,用莫队写的话,关键在如何维护答案,[L,R] - > [L,R+1]这段中,多出来了什么东西?区间[L、L+1....R+1,R+1]这所有区间的gcd,这个题还有一个关键就是以R为左端点或者右端点的所有区间的gcd值最多有o(log(a[i]))种,那么我们用莫队维护的时候,每一次暴力的复杂度就是o(log(a[i]))。
我们发现现在莫队的复杂度已经到了n*sqrt(n)*log(a[i])了,再加操作就会T了(其实我也不知道会不会,因为我直接离线写的,只是感觉会T)。但是我们剩下来还有一个问题没有解决。num[i] 在 [L,R]这段区间的每个gcd的值是多少?并且每个gcd值对应了多少段区间。这个时候我们很容易想到2分,因为随着区间长度的增加,gcd值是一个不升的过程。RMQ求区间gcd的复杂度就是o(n*logn*logn)。RMQ完了预处理出每个i左边每个gcd,右边每个gcd对应的位置需要o(n*logn*logn)(之所以多一个logn,因为二分的时候需要)。
当然这道题题解给出的使用树状数组维护。然而个人比较喜欢暴力!!!
感觉这道题很难讲清楚,还是自己敲一遍比较有感觉。然后这道题让我发现了我一直以来写莫队的一个错误的地方,也是我之前补题的时候那道题一直没有AC的原因,在代码里面mark出来吧,还是。下面是AC代码。
#include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <queue> #define ll long long #define FOR(i,x,y) for(int i = x;i < y;i ++) #define IFOR(i,x,y) for(int i = x;i > y;i --) #define N 11000 using namespace std; const int M = (int)sqrt(N+0.5); int num[N],n,Q; int l[N][50],r[N][50],lp[N][50],rp[N][50],lc[N],rc[N],lv[N][50],rv[N][50]; ll ANS[N]; int GCD(int a,int b){ if(b > a) {int tem = a;a = b;b = tem;} return b == 0 ? a : GCD(b,a%b); } void RMQ(){ FOR(i,0,n){ l[i][0] = num[i]; r[i][0] = num[i]; } int bit = (int)log2(n*1.0); FOR(i,1,bit+1){ FOR(j,0,n){ if(j + (1<<i) > n) break; r[j][i] = GCD(r[j][i-1],r[j+(1<<(i-1))][i-1]); } } FOR(i,1,bit+1){ IFOR(j,n-1,-1){ if(j - (1<<i) < -1) break; l[j][i] = GCD(l[j][i-1],l[j-(1<<(i-1))][i-1]); } } } void init(){ RMQ(); FOR(i,0,n){ lc[i] = rc[i] = 0; int bit1 = (int)log2(1.0*(n-i)); int bit2 = (int)log2(1.0*(i+1)); int flag1 = GCD(r[i][bit1],r[n-(1<<bit1)][bit1]); int flag2 = GCD(l[i][bit2],r[0][bit2]); int tem = num[i],pos = i; while(1){ int L = pos, R = n-1; if(tem == flag1){ rv[i][rc[i]] = tem; rp[i][rc[i]++] = n; break; } while(L < R){ int mid = (L+R) >> 1; int bit = (int)log2(mid-i+1.0); int t = GCD(r[i][bit],l[mid][bit]); if(t == tem) L = mid+1; else R = mid; } rv[i][rc[i]] = tem; tem = GCD(tem,num[L]); rp[i][rc[i]++] = L; pos = L; } tem = num[i]; pos = i; while(1){ int L = 0, R = pos; if(tem == flag2){ lv[i][lc[i]] = tem; lp[i][lc[i]++] = -1; break; } while(L < R){ int mid = (L+R+1) >> 1; int bit = (int)log2(i-mid+1.0); int t = GCD(l[i][bit],r[mid][bit]); if(t == tem) R = mid-1; else L = mid; } lv[i][lc[i]] = tem; tem = GCD(tem,num[R]); lp[i][lc[i]++] = R; pos = R; } } } struct Commends{ int lx,rx; int id; bool operator < (const Commends& rhs) const{ if(lx/M == rhs.lx/M) return (rx < rhs.rx); ///这个地方一定不能写成rx/M < rhs.rx/M (话说如果写成这样了,为什么不是t,而是wa?有没有大神可以给个解释?) return (lx/M < rhs.lx/M); } }cmd[N]; void MO(){ int L = 0,R = -1; ll ans = 0; FOR(j,0,Q){ while(R < cmd[j].rx){ R ++; int pos = R; ll tem = 0; FOR(i,0,lc[R]){ if(lp[R][i] < L){ tem += (ll)lv[R][i]*(ll)(pos-L+1); break; } tem += (ll)lv[R][i]*(ll)(pos - lp[R][i]); pos = lp[R][i]; } ans += tem; } while(R > cmd[j].rx){ int pos = R; ll tem = 0; FOR(i,0,lc[R]){ if(lp[R][i] < L){ tem += (ll)lv[R][i]*(ll)(pos-L+1); break; } tem += (ll)lv[R][i]*(ll)(pos - lp[R][i]); pos = lp[R][i]; } ans -= tem; R --; } while(L < cmd[j].lx){ int pos = L; ll tem = 0; FOR(i,0,rc[L]){ if(rp[L][i] > R){ tem += (ll)rv[L][i]*(ll)(R-pos+1); break; } tem += (ll)rv[L][i]*(ll)(rp[L][i] - pos); pos = rp[L][i]; } ans -= tem; L ++; } while(L > cmd[j].lx){ L --; int pos = L; ll tem = 0; FOR(i,0,rc[L]){ if(rp[L][i] > R){ tem += (ll)rv[L][i]*(ll)(R-pos+1); break; } tem += (ll)rv[L][i]*(ll)(rp[L][i] - pos); pos = rp[L][i]; } ans += tem; } ANS[cmd[j].id] = ans; } } int main() { freopen("in.txt","r",stdin); freopen("out.txt","w",stdout); int T; scanf("%d",&T); while(T--){ scanf("%d",&n); FOR(i,0,n) scanf("%d",&num[i]); init(); scanf("%d",&Q); //M = (int) sqrt(n+0.5); int u,v; FOR(i,0,Q){ scanf("%d%d",&u,&v); cmd[i].lx = u-1; cmd[i].rx = v-1; cmd[i].id = i; } sort(cmd,cmd+Q); MO(); FOR(i,0,Q){ printf("%I64d ",ANS[i]); } } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。