zoukankan      html  css  js  c++  java
  • [Oracle] Group By 语句的扩展

    常常写SQL语句的人应该知道Group by语句的主要使用方法是进行分类汇总,以下是一种它最常见的使用方法(依据部门、职位分别统计业绩):

    SELECT  a.dname,b.job,SUM(b.sal) sum_sal
    FROM dept a,emp b
    WHERE a.deptno = b.deptno
    GROUP  BY a.dname,b.job;
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
    SALES          MANAGER         2850
    SALES          CLERK            950
    SALES          SALESMAN        5600
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    ACCOUNTING     CLERK           1300
    RESEARCH       MANAGER         2975
    RESEARCH       ANALYST         6000
    RESEARCH       CLERK           1900
    这时候,假设有人跑过来跟你说:我除了以上数据之外,还要每一个部门总的业绩以及全部部门加起来的业绩,这时候你非常可能会想到例如以下的笨方法(union all):

    select * from (
    SELECT  a.dname,b.job,SUM(b.sal) sum_sal
    FROM dept a,emp b
    WHERE a.deptno = b.deptno
    GROUP  BY a.dname,b.job
    UNION ALL
    --实现了部门的小计
    SELECT  a.dname,NULL, SUM(b.sal) sum_sal
    FROM dept a,emp b
    WHERE a.deptno = b.deptno
    GROUP  BY a.dname
    UNION ALL
    --实现了全部部门总的合计
    SELECT  NULL,NULL, SUM(b.sal) sum_sal
    FROM dept a,emp b
    WHERE a.deptno = b.deptno)
    order by dname;
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
    ACCOUNTING     CLERK           1300
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    ACCOUNTING                     8750
    RESEARCH       CLERK           1900
    RESEARCH       MANAGER         2975
    RESEARCH       ANALYST         6000
    RESEARCH                      10875
    SALES          CLERK            950
    SALES          MANAGER         2850
    SALES          SALESMAN        5600
    SALES                          9400
                                  29025
    
    union all 合并笨办法产生的运行计划
    -------------------------------------------------------------------------------
    Plan hash value: 2979078843
    -------------------------------------------------------------------------------
    | Id  | Operation              | Name | Rows  | Bytes | Cost (%CPU)| Time     |
    -------------------------------------------------------------------------------
    |   0 | SELECT STATEMENT       |      |    29 |   812 |    23  (22)| 00:00:01 |
    |   1 |  SORT ORDER BY         |      |    29 |   812 |    23  (22)| 00:00:01 |
    |   2 |   VIEW                 |      |    29 |   812 |    22  (19)| 00:00:01 |
    |   3 |    UNION-ALL           |      |       |       |            |          |
    |   4 |     HASH GROUP BY      |      |    14 |   756 |     8  (25)| 00:00:01 |
    |*  5 |      HASH JOIN         |      |    14 |   756 |     7  (15)| 00:00:01 |
    |   6 |       TABLE ACCESS FULL| DEPT |     4 |    88 |     3   (0)| 00:00:01 |
    |   7 |       TABLE ACCESS FULL| EMP  |    14 |   448 |     3   (0)| 00:00:01 |
    |   8 |     HASH GROUP BY      |      |    14 |   672 |     8  (25)| 00:00:01 |
    |*  9 |      HASH JOIN         |      |    14 |   672 |     7  (15)| 00:00:01 |
    |  10 |       TABLE ACCESS FULL| DEPT |     4 |    88 |     3   (0)| 00:00:01 |
    |  11 |       TABLE ACCESS FULL| EMP  |    14 |   364 |     3   (0)| 00:00:01 |
    |  12 |     SORT AGGREGATE     |      |     1 |    39 |            |          |
    |* 13 |      HASH JOIN         |      |    14 |   546 |     7  (15)| 00:00:01 |
    |  14 |       TABLE ACCESS FULL| DEPT |     4 |    52 |     3   (0)| 00:00:01 |
    |  15 |       TABLE ACCESS FULL| EMP  |    14 |   364 |     3   (0)| 00:00:01 |
    -------------------------------------------------------------------------------
    事实上,假设你知道Group By的Rollup扩展的话,这样的需求仅仅是小case:

    SELECT  a.dname,b.job, SUM(b.sal) sum_sal
    FROM dept a,emp b 
    WHERE a.deptno = b.deptno
    GROUP  BY ROLLUP(a.dname,b.job);
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
    SALES          CLERK            950
    SALES          MANAGER         2850
    SALES          SALESMAN        5600
    SALES                          9400
    RESEARCH       CLERK           1900
    RESEARCH       ANALYST         6000
    RESEARCH       MANAGER         2975
    RESEARCH                      10875
    ACCOUNTING     CLERK           1300
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    ACCOUNTING                     8750
                                  29025
    
    rollup写法产生的运行计划
    -----------------------------------------------------------------------------
    Plan hash value: 1037965942
    -----------------------------------------------------------------------------
    | Id  | Operation            | Name | Rows  | Bytes | Cost (%CPU)| Time     |
    -----------------------------------------------------------------------------
    |   0 | SELECT STATEMENT     |      |    14 |   756 |     8  (25)| 00:00:01 |
    |   1 |  SORT GROUP BY ROLLUP|      |    14 |   756 |     8  (25)| 00:00:01 |
    |*  2 |   HASH JOIN          |      |    14 |   756 |     7  (15)| 00:00:01 |
    |   3 |    TABLE ACCESS FULL | DEPT |     4 |    88 |     3   (0)| 00:00:01 |
    |   4 |    TABLE ACCESS FULL | EMP  |    14 |   448 |     3   (0)| 00:00:01 |
    -----------------------------------------------------------------------------
    能够发现,这样的方法不但SQL书写方便,性能也能得到提高。

    这时候,假设又有人跑过来说:除了以上数据,他还须要每一个职位总的业绩,你仅仅要把rollup换成cube就能够了,例如以下所看到的:

    -- CUBE分组
    SELECT  a.dname,b.job, SUM(b.sal) sum_sal
    FROM dept a,emp b 
    WHERE a.deptno = b.deptno
    GROUP  BY CUBE(a.dname,b.job);
    
    DNAME          JOB          SUM_SAL
    -------------- --------- ----------
                                  29025
                   CLERK           4150
                   ANALYST         6000
                   MANAGER         8275
                   SALESMAN        5600
                   PRESIDENT       5000
    SALES                          9400
    SALES          CLERK            950
    SALES          MANAGER         2850
    SALES          SALESMAN        5600
    RESEARCH                      10875
    RESEARCH       CLERK           1900
    RESEARCH       ANALYST         6000
    RESEARCH       MANAGER         2975
    ACCOUNTING                     8750
    ACCOUNTING     CLERK           1300
    ACCOUNTING     MANAGER         2450
    ACCOUNTING     PRESIDENT       5000
    从上面能够看出:cube比rollup的展现的粒度更细一些。

    这时候,假设又有人跑过来说:他不须要那么细的数据,仅仅须要汇总的数据,能够使用Grouping Sets:

    ---GROUPING SETS分组
    SELECT to_char(b.hiredate,'yyyy') hire_year,a.dname,b.job, SUM(sal) sum_sal
    FROM dept a,emp b 
    WHERE a.deptno = b.deptno
    GROUP BY GROUPING SETS(to_char(b.hiredate,'yyyy'),a.dname,b.job);
    
    HIRE DNAME          JOB          SUM_SAL
    ---- -------------- --------- ----------
    1987                                4100
    1980                                 800
    1982                                1300
    1981                               22825
         ACCOUNTING                     8750
         RESEARCH                      10875
         SALES                          9400
                        CLERK           4150
                        SALESMAN        5600
                        PRESIDENT       5000
                        MANAGER         8275
                        ANALYST         6000


  • 相关阅读:
    sublime text添加snippet
    python __globals__, __file__
    Zen of Python
    Python的魔法函数之
    tornado session
    sqlalchemy学习
    自控力
    无需编译、快速生成 Vue 风格的文档网站
    python描述符理解
    python property理解
  • 原文地址:https://www.cnblogs.com/hrhguanli/p/3945140.html
Copyright © 2011-2022 走看看